Aircraft Review Archives - FLYING Magazine https://www.flyingmag.com/tag/aircraft-review/ The world's most widely read aviation magazine Sat, 19 Aug 2023 14:31:10 +0000 en-US hourly 1 https://wordpress.org/?v=6.4.4 We Fly: Piper M600/SLS Halo https://www.flyingmag.com/we-fly-piper-m600-sls-halo/ https://www.flyingmag.com/we-fly-piper-m600-sls-halo/#comments Fri, 12 Nov 2021 16:40:37 +0000 https://flying.media/?p=98350 The post We Fly: Piper M600/SLS Halo appeared first on FLYING Magazine.

]]>
Two larger-than-life FLYING covers grace the factory walls at the Piper Aircraft manufacturing facility in Vero Beach, Florida. The first, from March 2008, shows off the newly launched Piper Matrix, a nonpressurized version of the original PA-46 series made a little bit easier to manage by its relative lack of complexity, bringing a big-cabin feel to a single-engine piston airplane aimed precisely at the owner-pilot. The second, from March 2011, features a Piper Mirage looking as though it would power its way straight off the wall and through the hangar doors on the far end of the production line. The turboprop version of the Malibu, the Mirage went the other direction from the Matrix, bestowing its bigger performance numbers upon those pilots ready to step up.

The Piper M600 at a Glance

FLYING exclusive offer: 7 Day Free Trial + 10% off Conklin&deDecker turbine aircraft data.

Ten years later, the newest evolution of the PA-46 series—Piper’s M600/SLS Halo—proposes to do both, delivering an envelope of protection readily managed by transitioning pilots while at the same time upping the ante in speed and payload. When the M600 update to the M500 first arrived on the scene in 2016, those dream numbers—the result of 100 more horsepower up front from a flat-rated PT6A-42A engine—really came true.

This year, with the FLYING Innovation Award-winning Autoland from Garmin giving the M600 its Halo, Piper’s quest for an ever-higher level of GA safety got a serious boost. The folks at Garmin will tell you Autoland couldn’t have come to fruition without Piper, and the feeling is mutual. “The M600 SLS and its Halo Safety System with Autoland is the result of an unwavering commitment to safety as well as the desire to evolve our products based on market input,” said Piper president and CEO John Calcagno. “This standard feature brings peace of mind to pilots and their families.”

Chasing the Grail

When FLYING first flew the initial M600 in market-survey mode five years ago—just hours before the FAA signoff on the type—we had a sense the PA-46 series had found its sweet spot, and the type has achieved great success. For the photo shoot for this article, we captured serial No. 173 in flight over the Atlantic Ocean, and I flew my demo flight in serial No. 163, currently in experimental mode, to test out several new goodies on board. Piper delivered 36 of the PA-46-600TP M600/SLS aircraft in 2020 and six in the first quarter of this year, to make a reported total of 161 out the door since its debut—with clearly more in the immediate pipeline.

Handling characteristics and performance make it comparable in some ways to half a Beechcraft King Air 200, according to pilots we talked with for this report. When Piper moved from the M500 to the M600, the extra 100 shp coaxed from the Pratt & Whitney PT6-series engines made all the difference in the world. In this case, they are the same 42s you find on King Air 200s from the early 2000s, but on the King Airs, they’re rated at 850 shp per side, while the M600 offers 600 shp. In the air, the M600′s wing makes it respond like the larger airplane, and the climb rate as high as 3,000 fpm stacks up well against the turboprop twin as well. Add in a range while carrying five passengers with light bags (a total of 1,000 pounds) of up to 800 nm—and the fact that it sips half the gas—this makes the M600/SLS a compelling choice for owners who fit that use case.

Garmin’s Autonomi suite
Garmin’s Autonomi suite becomes the M600’s Halo, integrating systems. Richard Maneen

A Protective Halo

The Halo-equipped M600/SLS debuted with Garmin’s Autoland as the premier feature in the model’s standard lineup beginning in 2020. But the well-rounded roster of capabilities that Autoland and its accompanying avionics, known collectively as Autonomi, pack onto the turboprop make it just part of an overall “safety system,” as Piper calls it.

To recap, in case you aren’t familiar with Autoland: The orchestrated suite of software and hardware directs the airplane to the nearest suitable airport in the event of pilot incapacitation. It does so by controlling the aircraft’s navigation, descent, weather and terrain avoidance, gear extension, flight-into-known-icing activation, flaps, braking, and all communication with ATC. While it’s designed for passengers to initiate with a guarded button on the panel, the pilot can start the sequence via that same button, or the airplane can initiate Autoland itself if the pilot is unresponsive in certain cases.

Hypoxia recognition incorporated into the emergency descent mode takes it one step further, monitoring the pilot any time they engage the autopilot above 14,000 feet msl. If the pilot is unresponsive to the system’s prompts, EDM will bring the airplane below 14,000 feet. After that descent, the system will initiate the Autoland sequence if no further response comes from the pilot after a set period of time.

Halo also includes Garmin’s electronic stability and protection, synthetic vision, SafeTaxi, TerminalTraffic (which syncs with ADS-B-equipped aircraft and ground vehicles), SurfaceWatch (directing you to the runway before takeoff and to the ramp after landing), Flight Stream 510 to create a Bluetooth connection between the aircraft and your mobile device, and an autothrottle system.

I flew the model Piper currently has in experimental/market-survey status, N163HL, specifically so I could test out the latest update to the Garmin autothrottle that was originally incorporated into the M600 for Autoland. With the upcoming approval, the pilot can use the autothrottle outside of the Autoland sequence. And as tested, the A/T certainly does its part to assist the pilot—but more on that a bit later.

Piper M600 cabin interior
The cabin interior features deluxe leather options. Richard Maneen

Preflight to Approach

Both models observed for this report feature the optional five-blade Hartzell composite propeller, approved in spring 2017, which—other than looking completely badass on the ramp—delivers an improved vibration signature inside the airplane, as well as likely better takeoff and climb performance, though no concrete numbers have been established by Piper. The steel-shank core is wrapped in carbon composite material and trimmed with a nickel-cobalt leading edge with a mesh erosion screen to protect the blades from foreign-object debris. That’s important because a single nick on the blade renders it unairworthy. As we noted on my preflight walk-around with Piper Aircraft business development director Dan Lewis, a stray drop of rain clinging to the leading edge can look an awful lot like a chip out of that blade. We were both relieved when it wiped off. That said, the propeller carries a lifetime guarantee, the result of a blade strength between five and 10 times that of blades with wood cores. Continuing on the walk-around, a hidey-hole-size compartment under a circular access panel near the horizontal stab can retain towels, testers and other cleaning accoutrements.

The fuselage could do with a few more inches in the cross section—a common refrain from those who will need to sit knee-to-knee with their fellow passengers in the back. I’m a not a large human, but it still took nimble maneuvering to drop myself into the left seat. Once settled into the flight deck, though, the M600 feels like a real front office, with a well-thought-out panel, easy-to-reach circuit breakers, and electrical-system controls on the overhead immediately in front of the pilot.

While taxiing, the rudder pedals remain a bit stiff, but the flight controls improve greatly in feel once you’re airborne. In fact, the relatively moderate pitch force in comparison to the slightly heavier aileron response reminded me of being in a stretched Bonanza with a longer wing. The same nose-heavy profile on landing will also echo that of a front-loaded A36, especially with two or three people placed towrds the front, and light baggage.

My introduction to the stand-alone autothrottle began in its takeoff setting, which comes on line as the powerplant reaches 700 pounds of torque. It felt like we were just getting started down the runway when the autothrottle captured the lever under my guiding hand. I continued steering, but the autothrottle set the Pratt & Whitney out front to the most efficient takeoff power setting and held it there as I came through 85 knots and rotated.

The climb from nearly sea level to 14,500 feet—above the lifting condensation level, its commensurate clouds and bumps, and general coastal fray—zoomed along at a variable rate between 2,500 and 3,000 fpm, with the total climb completed in less than six minutes on the G3000′s clock. With a couple of clearing turns in the last part of the climb, I agreed with the prior assessment that the airplane’s coupling is not unlike that of its larger brethren.

Piper M600 flight deck
A. The electrical-system controls on the overhead panel help declutter the main instrument panel.

B. The Garmin GI 275 integrated flight instrument serves as a backup to the G3000 flight deck, replacing the Aspen Avionics Evolution PFD.

C. The The autothrottle button on the throttle can be engaged as soon as the power reaches 700 pounds of torque on takeoff.

D. The G3000 flight displays can be arranged and split in a number of ways to suit the pilot and the mission.

E. The Garmin GWX 8000 onboard weather radar can be displayed in multiple locations.
Richard Maneen

At 14,500 feet, I disconnected the A/T, which had held us at the maximum efficient torque setting throughout the climb, and Lewis walked through the M600′s protective features that predated the Halo version: electronic stability and protection and underspeed protection. Added since we previously flew the M600 in 2016 is overspeed protection, an addition to the emergency-descent-management protocol first installed with the G3000 in the model that year. During the overspeed-protection sequence, I watched and listened as the airspeed approached the top end, and when it rolled past 248 knots, a voice announced, “Autothrottle,”—which was already engaged from the takeoff and climb—and the power lever moved as the system adjusted the torque to a lower setting to keep us from blasting through the invisible speed wall.

With all of the envelope protection baked into the M600, it’s important to note the ability to override all of it in the event an evasive maneuver is required. That tough wing is responsible in part for a green arc (73 kias to 251 kias) on the tape that goes all the way up to the barber pole at 251 kias, the VNO.

  • CHECK OUT MORE AIRCRAFT REVIEWS: We Fly

That said, it almost felt like a setup when things played out as they did when we headed back toward the airport. Upon descending down to 4,000 feet to duck below a scattered cumulus layer and line up for an approach into Vero, Lewis called out, “Skydiver!” and gestured out to the front of the airplane. Sure enough, there was a canopy at 12 o’clock and well inside our traffic bubble. I hit a 30-degree bank left to avoid the person hanging in the straps, only to see another canopy come through my field of view. I banked harder and pressed the autopilot-disengage button on the yoke to release the ESP, which would have resisted my momentary bank past 45 degrees to steer clear of the skydiver.

“The autothrottle will catch you a little faster than the system [alone] will,” says product marketing manager Bryant Elliott. “It will start increasing power before that underspeed kicks in. So, if the autothrottle is not engaged, the airspeed at which the underspeed is captured will be a bit lower.” The upshot? The enhanced aircraft flight-control system, launched with the M500 and M350 in 2015, now has another layer of protection.

When you look at what Garmin has been working on all along, they just needed a way to tie all the systems together to create Autoland. The Garmin GFC 700 has been able to fly an approach all the way to the ground the whole time; it just needed a way to extend the gear and flaps and flare and brake correctly.

Piper M600
The radar pod is streamlined into the M600’s robust wing. Richard Maneen

Angels in the Panel

Up front, you can configure the screens to display any way you want—except maybe the latest Netflix movie—including full-screen PFDs on the left and right with traffic and map insets, as well as a split screen on all three displays featuring large-scale versions of pages such as weather, terrain or the engine-indication system. The big screens are driven by a pair of GTN 850s positioned side by side vertically on the center console above the power quadrant.

The daily summer thunderstorms had yet to kick up along the Treasure Coast during our demo flight, so we couldn’t find much to scope on the onboard radar. The M600 included the standard Garmin GWX 75 with an optional enhancement package—this option is now the newly rebranded Garmin GWX 8000 (previously the GWX 80). When the M600 debuted, its clean-sheet wing streamlined the radar pod into the leading edge of the right wing, improving ground clearance and allowing for a wider gear stance by a couple of inches on each side. The result of the change to the main gear is improved crosswind handling, with a demonstrated limit of 17 knots. “Ground clearance was not really an issue—it was getting the radar away from the fuselage,” Elliott said. The false feedback from the propeller went away with the change.

The GWX 8000 brings large-aircraft radar capability to the owner-flown market. Primary among its features is StormOptix. As Elliott noted: “Piper has offered the ground-clutter suppression and turbulence detection since the launch of the GWX 75, but the additional Auto Mode and volumetric scanning are unique to the GWX 8000. Also, the volumetric scanning provides advanced ground-clutter suppression and advanced turbulence detection, as well as zero blind range,” which means that returns are maintained in the system’s memory, enabling them to be presented on the screen until they are essentially zero nautical miles away.

Placing the GWX 8000 into auto mode activates the three-dimensional volumetric scanning with automatic adjustment of the antenna sweep to create a picture of the scanned volume. Those of us who recall single-color onboard radar (often a ghostly green) will be blown away by the 16-color palette available on the new display. Because of the diameter of the antenna, the wind-shear option is not available in the M600—but other enhancements, such as predictive hail and lightning, will be available with future software loads.

Backup instrumentation is now provided by the Garmin GI 275 integrated flight display, with its smaller, round-dial presentation, taking the place of the Aspen Avionics Evolution PFD.

Piper M600
The landing gear has been moved outward to improve ground handling compared with previous PA-46-series models. Richard Maneen

One area where the M600 shines is in operational cost: That figure runs roughly $750 per hour according to the Aircraft Cost Calculator. How does this compare to other single-engine turboprops in the lineup? Though steep in comparison to piston-powered, high-performance singles, it ranks well among its peers in the single-engine-turboprop class, with the M600 besting the Daher TBM 940 and Pilatus PC-12 NG by nearly $200 per hour—and about $50 less per hour than the Epic E1000. Granted, with each of those competitors, you gain carrying capability and speed in varying amounts.

The new black-and-silver paint schemes manage to look both cool on the ramp and hot in the air. Interiors have had an update as well, with the EXP package now standard in the M600/SLS. But it’s more than an illusion of comfort and protection that the cabin environment provides. With the FLYING Innovation Award-winning Halo quietly standing by, the pilot now has the ability to give their passengers a true safety net of their own.

Piper M600/SLS Halo Statistics

Price (as tested): about $3.12 million Max Takeoff Weight: 6,000 lb.
Engine: Pratt & Whitney PT6A-42 Max Landing Weight: 6,000 lb.
Propeller: Hartzell five-blade composite Baggage Compartment (aft): 100 lb.
Horsepower: 600 shp, flat-rated Useful Load: 2,400 lb.
Seats: 6 Max Usable Fuel: 260 gal.
Length: 29 ft., 8 in. Max Operating Altitude: 30,000 ft.
Height: 11 ft., 4 in. Max Rate of Climb: 3,000 fpm
Cabin Height: 3 ft., 11 in. Max Cruise Speed: 274 ktas
Cabin Width: 4 ft., 2 in. Max Range: 1,658 nm at 245 kias, ISA, MTOW, no wind, ­45-min. ­reserve
Wingspan: 43 ft., 2 in. VNO: 251 knots
Power Loading: 10 lb./hr. Stall Speed, Landing Configuration, MTOW: 62 kias
Wing Loading: 28.71 lb./sq. ft. Takeoff Distance Over 50 Ft. Obs: (ISA, sea level) 2,635 ft.
Standard Empty Weight: 3,250 lb. Landing Distance Over 50 Ft. Obs: (ISA, sea level) 2,659 ft.

The Right Training

An accident claimed a Piper M600—but fortunately not its pilot—in a runway-excursion event earlier this year. The preliminary report from the National Transportation Safety Board points to the pilot’s low time in type. Interviews with the broker who sold him the airplane indicate that the pilot’s low total time and laissez-faire approach to the type-specific training offered by Piper may have contributed to the airframe’s demise.

Piper offers a five-day transition course to the M600 through its partner, Legacy Flight Training at Vero Beach and Scottsdale, Arizona. And though the training in type is important, it’s also worth noting that the PA-46 series puts pilots into the midlevels (between FL 160 and FL 300) often for the first time. This means flying a fast, pressurized aircraft above some of the weather, but not all. It means exposure to high-altitude flying above FL 250—and getting the requisite training if you go there. It means more exposure to in-flight icing. These conditions are all straightforward enough to handle while everything is going well, but once a chain of events links up, experience up here can be a swift and harsh teacher. In the nonturbine PA-46s, flight in the midlevels required precise engine management, somewhat ameliorated by the altitude-happy PT6A.

This story appeared in the September 2021 issue of FLYING Magazine




The post We Fly: Piper M600/SLS Halo appeared first on FLYING Magazine.

]]>
https://www.flyingmag.com/we-fly-piper-m600-sls-halo/feed/ 1
Pipistrel’s Panthera Looks to Move From Experimental to Certification With Style https://www.flyingmag.com/we-fly-pipistrel-panthera/ https://www.flyingmag.com/we-fly-pipistrel-panthera/#comments Tue, 13 Jul 2021 19:24:57 +0000 https://flying.media/we-fly-pipistrel-panthera/ The post Pipistrel’s Panthera Looks to Move From Experimental to Certification With Style appeared first on FLYING Magazine.

]]>
Automobiles with gull-wing doors are rare. For me, a Mercedes-Benz 300SL immediately comes to mind. Aircraft with gull-wing doors—such as the Cessna TTx and Socata Trinidad—are even rarer still, so when I first saw the Pipistrel Panthera from a distance at Chicago’s Waukegan National Airport (KUGN), I knew this airplane was something special. The company’s heritage of gliders and drones built for minimum drag and maximum glide capabilities deserves a nod.

As I gently pulled open the Panthera’s gull-wing door and slipped into the front seat, I also realized that pilots who buy one of these won’t simply climb into the cockpit as much as they’ll wear the Panthera like a sort of superhero suit. It’s formfitting but with comfort like that of a well-designed sports car. Aircraft control is handled via dual control sticks between the pilot’s and front passenger’s knees.

The Panthera’s main doors are hinged at the top of a 6-inch-wide bar that runs fore to aft over the center of the 47-inch-wide cockpit. There’s a separate center-hinged door on the left side for rear-seat passengers. Gently pull down the doors, and the view becomes truly impressive—because other than the center post, all the pilot sees is the great outside, from straight ahead to nearly the tail feathers and even above. The nose is long when viewed through the raked windshield, which could be a problem for the most vertically challenged aviators to see over; the seats move very little fore and aft. Those seats are beautiful, though, with integrated headrests. The seats don’t recline, however, because they are already canted back.

The Panthera’s radical appearance certainly makes it look like a next-generation GA aircraft. Its smooth, sleek appearance seemed about as radical to me the day I first saw it as did a Cirrus SR20 15 years ago, when I compared it then with a Cessna 182. Kneel in front of the Panthera and it’s clear the fuselage is as clean a design as most pilots have ever experienced. There are no flap tracks hanging in the breeze from this airplane, and there’s not a gap seal anywhere in sight. Even the exhaust system has been specially tuned for maximum power and minimum noise.

Pipistrel Panthera
A head-on look at the Panthera shows off the sleekness of the entire airframe. [Photo: Jim Barrett]

Production Pantheras will be built to Part 23 standards that include an all-composite, mainly carbon-fiber structure—with very few access panels—covered in Kevlar for added passenger protection. The airframe is designed to be as maintenance-free as possible, with permanently lubricated push-rod tubes actuating the ailerons and elevators. The rudder is cable-operated and requires occasional lubrication. Currently powered by a 260 hp Lycoming IO-540-V4A5, Pipistrel says the Panthera will cruise at nearly 200 knots at 75 percent power, a few knots more than a late-model Mooney Ovation—and the Mooney uses a 300 hp engine. Standard on the Panthera is a specially designed German MT propeller. Panthera specs cite a range of 1,000 nm and a maximum certified ceiling of 25,000 feet. For readers doing their own research, there is an experimental version of the Panthera in Europe, but that model will not be available in the US.

The Panthera includes trailing-link landing gear created from titanium and includes 11 doors that seal out just about every possible performance-stealing air gap. The emergency gear extension sits between the two front seats under the center armrest.

The flaps are electric with just two operational settings: 15 and 45 degrees. Standard fuel capacity on the Panthera is 54 gallons. Optional tanks will add another 20 gallons per side, but that will cost about 240 pounds of the airplane’s significant 1,100-pound useful load. The Panthera weighs 2,900 pounds at gross, about the same as a Cirrus SR20 and a few hundred pounds less than a Mooney Ovation.

The panel includes a bevy of avionics that equip the Panthera for serious IFR flight (flight-into-known-icing capabilities are in the works). They include a Garmin G3X touchscreen primary flight display (a second G3X is an option), a touchscreen GTN 750 Com/Nav/IFR GPS, a GTN 650 second Nav/IFR GPS, and a two-axis GPS slaved digital autopilot. Mid-Continent Instruments’ Standby Attitude Module (SAM) provides backup airspeed, altimeter and attitude indications.

The Panthera’s standard equipment will include a GRS emergency parachute system that requires repacking every nine years, very similar to other airframe-chute-equipped aircraft. A big difference is this chute’s deployment speed—195 knots versus 140 knots on the Cirrus. Pipistrel believes its chute offers an additional selling point, according to Andrew Chan, co-founder of Right Rudder Aviation in Inverness, Florida. “The cost to repack a Cirrus aircraft chute is roughly $12,000,” he said. “The repack on the Panthera is expected to cost closer to $5,000 with a downtime of approximately two days.” Right Rudder is the sole Panthera dealer in the U.S.

Pipistrel Panthera
A. A center-mounted control stick reduces the real estate needed on the panel while allowing for fun maneuvering in the Panthera.

B. Optional air conditioning will be available on all production aircraft to help mitigate the effect of the broad canopy.

C. The Garmin GMC 307 digital autopilot is easy to manipulate from just beneath the glare shield.

D. The flaps, extendable below 106 knots, offer two settings: 15 and 45 degrees.

E. The parking brake is conveniently located on the center console.
Jim Barrett

A Little History Yields a Few Answers

Chan offered me some Panthera history before we launched from KUGN. Our demonstration airplane, N37RR, is the only assembled Panthera in the US as of press time. The Panthera has not yet been certified by either the European Union Aviation Safety Agency or the FAA. A target for that action is currently late 2022 or early 2023. But the genesis of the Panthera was actually in 2012. So, if the Panthera was first conceived nearly 10 years ago, the logical question is: Why is the airplane just now beginning to see daylight?

Chan said he hears that question quite often. Something that slowed the Panthera’s development was “a design change,” he said. “Pipistrel initially launched the Panthera with a Lycoming IO-390 normally aspirated powerplant but always wanted the aircraft available with two engines, the IO-390 and the more powerful IO-540.” Chan said the original design was to create the ultimate personal-aircraft brand with specific performance guidelines, such as a 1,000 nm range, an 1,100-pound useful load and a top speed of 200 knots—and all while burning 10 gallons per hour. “And they got really close,” he added. “So, it’s not quite 10 [but] 10.8 gph. It’s not quite 200 knots; it’s more like 185, but I think those are still very respectable numbers. The useful load is, in fact, 1,100 pounds, and the Panthera will fly [to its] 1,000 nautical mile range with the optional extended-range tanks.”

Another early requirement was for the engine to use automotive fuel because avgas is often tough to come by outside the US. Lycoming promised a supplemental type certificate for the IO-390 that never materialized, so Pipistrel decided to offer only the six-cylinder IO-540. Chan said: “The [normally aspirated] IO-540 produces 50 more horsepower [260 hp total] than the IO-390. When connected to the three-blade MT constant-speed designed specifically for this airplane, it drastically changed the rate of climb to a very respectable climb rate of 2,000 fpm on a cold day.” He says Pipistrel has also been planning for an electric version of the Panthera in the future. While an engine switch might not seem like a huge hurdle, the designers realized a new engine would require a new cowling in order to make sure the airplane’s performance did not suffer, especially from any cooling issues. The amount of time devoted to the redesign was worth the effort because, Chan said, it’s impossible to shock-cool the engine during a descent, a feat other manufacturers can’t match.

When comparing aircraft performance, the differences between individual powerplants are worth noting, and all vary by local conditions. The Panthera’s Lycoming delivers 260 hp, the Cirrus SR22 310 hp, and the late-model Mooney 300 hp. Panthera specs show a cruise speed of about 198 knots, while the SR22 cruises at about 183 knots and the Ovation at about 170 knots with variations for altitude and OAT. The Mooney and Panthera typically burn less than 14 gallons per hour—while the Cirrus is using closer to 18 gph.

While many pundits compare the Panthera to a Cirrus SR22, Tine (pronounced “Tea-neh”) Tomazic, one of the three Pipistrel R&D engineers in Slovenia behind the Panthera, says the airplane was never designed as a “Cirrus killer.” “It’s built for a different type of aviator. The Panthera was always aimed to fit somewhere between a Diamond DA40 and a Cirrus. A better comparison, by mission, might be to think of the Panthera as a modern-day Mooney. It doesn’t need to fly at extremely high altitudes to go fast. It’s not built for a truck driver who has a side stick in their hands and mostly flies on the autopilot. I heard someone call a Cirrus a dependable machine, like a Toyota Camry. But someone who really enjoys driving on a curvy road might want an Audi A6. We see the Panthera coexisting quite nicely alongside Cirrus but catering to pilots who really enjoy stick-and-rudder flying.”

But who is going to spend the money for a Panthera performance machine if they can’t have it for a few years? Chan said, “Some customers are already Cirrus owners who will keep their airplanes until their Panthera arrives.” So far, Pipistrel says it holds 150 Panthera orders.

Pipistrel Panthera
Pipistrel brings its brand name to an ultra-quick four-place aircraft. [Photo: Jim Barrett]

Going Airborne

I was itching to feel how the Panthera performed. The day Andrew Chan and I flew, we were well under gross with about half fuel and just the two of us on board. The OAT was about minus 5 degrees Celsius under clear skies. Once the preflight was complete, I climbed aboard and gently pulled down the door. Chan reminded me again that unlike some airplanes, locking the Panthera’s door did not require slamming it into place. As I familiarized myself with the cockpit, there was no doubt this airplane comes with a sports-car-like interior environment. It’s a clean design with everything clearly laid out: landing-gear handle and lights above my right hand just beneath the glare shield, flaps farther right, and backup flight instruments in between with autopilot controls just beneath. All circuit breakers are positioned to the far right on the instrument panel and are easily visible. The large Garmin screens make information pretty easy to gather, assuming the pilot is familiar with the touchscreen system.

The Lycoming started after just a few spins of that big MT prop, and even with headsets on, the engine made a throaty sports-car sound. Once we were taxiing to Runway 22 at KUGN, I realized the cost of having that big overhead bar in the cockpit. The left-seat pilot’s view is blocked some as they execute a right turn, while someone taxiing from the right seat needs to be more cautious about left turns. Pilots with a little taildragger time should quickly feel at home looking over that long nose. I took me a bit to get used to the brakes with my feet firmly on the rudder pedals and using just the tips of my toes; though, I did find a sweet spot after a bit. The control stick makes a flight-control check simple. The stick also contains a top-hat trim button, an autopilot disconnect and a push-to-talk mic. After the first few minutes, there was no need to look down because it’s easy to simply feel the different shapes of the buttons.

At takeoff, the pilot must be ready to really steer the Panthera down the runway with the torque that the combination of the MT propeller and Lycoming engine delivers. It’s almost impossible not to feel when the Panthera is ready to fly, and once airborne with the gear up, the airplane began to show its colors. I trimmed for a 135-knot climb speed and quickly saw a 1,500 fpm climb as we headed west toward Fox Lake, a prominent landmark in northern Illinois. Climbing to 6,500 feet, I realized the Panthera required very little additional right rudder.

I waited to pull back the power at level off just to watch the acceleration. It was a cold day in December, but the indicated airspeed quickly rose into the yellow arc, which was my cue to haul back on the throttle. We settled on a less-spectacular 24 inches of manifold pressure that delivered 181 knots to see that promised 10.5-gallon-per-hour fuel burn. It didn’t take much additional power to see speeds above 190.

I never got around to trying the automation because someone was waiting back at Waukegan for the next demo, so I focused on air work. The Panthera is light on the controls, with almost an aerobatic feel. I could easily wrap it into a 45- to 50-degree bank to the left and one back to the right with ease. The visibility outside was at least 25 miles, while inside during the turns, it was easy to see the ground and back the other way toward the sky—and with the nearly wraparound windows, I could easily see behind us.

Before I knew it, Chan said it was time to head back to Waukegan. That’s when I learned an important lesson every Panthera pilot will need to embed in their mind early on. The Panthera has no speed brakes, so descending and slowing need to be planned in advance. Because I didn’t need to worry about shock-cooling that big Lycoming, Chan suggested I first advance the propeller to a high rpm and then pull back on the throttle. It still took time to slow the airplane because the gear-extension and flap speeds are quite low—106 knots to be exact. Pilots will need to plan far ahead, especially if they’re inbound on an instrument approach. Once established on downwind at 90, I added flaps until turning final when I slowed to 80 knots. As I approached the runway, I continued slowing, crossing the end at about 75, about the same speeds used in the Cirrus. My only Panthera landing was smooth—thanks in part to that trailing-link gear.

The Panthera is an exciting airplane for the serious pilot who wants to feel what they’re flying, as Tomazic says. The purchase of a Pipistrel Panthera requires access to an app that coverts euros to dollars because the European currency is primary for all transactions. A deposit will set a pilot back 50,000 euros, or roughly $58,800 at press time. That deposit is fully refundable until about six months before the aircraft is delivered from Pipistrel’s factory in Italy, not far from the primary engineering facility in Slovenia. The latest price on a basic Panthera is about $700,000. Options include extended-range tanks, oxygen, air conditioning, FIKI deice and upgraded stitching on the seats. Choosing all these options will bring the price closer to $900,000.

And the Panthera still needs to earn its EASA and FAA certification, but for those with the patience to wait—wow, what a performer this airplane will be.

Pipistrel Panthera
A glance inside the cockpit of the Panthera shows off the sports-car-like attention to detail worthy of only the truest stick-and-rudder aviator. [Photos: Jim Barrett]

Pipistrel Panthera Specifications

Price (as tested): about $900,000
Engine: Lycoming IO-540V-V4A5 Propeller: MT three-blade constant-speed composite
Horsepower: 260 hp Seats: 4
Length: 26 ft. 6 in. Height: 7 ft. 2 in.
Cabin Width: 3 ft. 11 in. Wingspan: 35 ft. 8 in.
Power Loading: 11.15 lb./hp Max Ramp Weight: 2,900 lb.
Useful Load: 1,100 lb. as equipped Full Fuel Payload: 770 lb. as equipped
Max Usable Fuel: 54 gal. with 40 gal. optional long-range tanks Max Operating Altitude: 25,000 ft.
Rate of Climb: 1,300 fpm at max gross weight Cruise Speed at 65% Power: 185 knots at 7,500 ft.
Maneuvering Speed: 143 kias Never-Exceed Speed: 220 knots
Fuel Burn: 13.6 gph at 75% power at 7,500 ft. Fuel Burn: 10.8 gph at 55% power at 7,500 ft.
Stall Speed, Flaps Up: 60 kias Stall Speed, Full Flaps: 55 kias
Takeoff Over 50 Ft. Obs: (ISA, sea level) 2,155 ft. Landing Over 50 Ft. Obs: (ISA, sea level) 1,135 ft.

Training in Type

As the only Panthera dealer in the US, Right Rudder Aviation has a unique role with the Panthera. Not only are they responsible for selling the aircraft, but RRA is also responsible for all pilot training and maintenance at the moment. Understanding the ups and downs other companies faced when introducing a new aircraft, Chan says Pipistrel thought long and hard about what it would require before pilots were let loose with this cat.

What makes or breaks an aircraft launch is how the marketplace sees it. What stood out to the Pipistrel folks, Chan says, was that “Cirrus could have done better on training” when it launched the SR20 and SR22 series. The Cirrus accident record early on was not pretty. Chan says: “Our roots come from the flight training industry [at RRA]. When we have a client training with us…we want them to go home to their family at the end of the day. So, safety is super, super key for all of our students—but also for the success of the aircraft ultimately.” Pipistrel has taken the unusual step of requiring an extensive transition-training commitment from everyone who signs a purchase contract.

“It’s a two-week, 25-flight-hour, in-depth program akin to a type rating,” Chan says. “We believe that will help ensure the success of the airplane. It runs…eight hours a day and includes lots of classroom time and lots of hands-on time with the aircraft.” Chan says with a clientele of high-net-worth individuals, he expected pushback such as: “Hey, why do I need to do that?” But Pipistrel is taking a hard stand on training. “If someone says, ‘I already know everything, I don’t need any additional training,’ we tell them thanks, but they’re not a client for the Panthera.” Except for the room and board near the Inverness training facility, the cost is included with the purchase.

As for the curriculum, Chan says the FAA dictates the required pilot skills through the airman certification standards. “But people who train beyond the minimums will improve their efficiency.” He says the price of not teaching beyond the minimums is much greater than two weeks of training. The classroom portion will dive deeply into aircraft systems as well as the intricacies of the Panthera’s sophisticated avionics. “Pilots typically use 25 percent of what the avionics system can display. Because we’re also a maintenance organization, we’ll open up the airplane to show owners what is connected to what.” Though the Panthera is not certified for spins, RRA intends to take new pilots through upset-prevention-and-recovery training in a different aircraft. Chan also says, “Insurance underwriters are exceptionally excited about [our training program] because they believe it will help reduce accidents and incidents.”

This story appeared in the June/July 2021 issue of Flying Magazine


The post Pipistrel’s Panthera Looks to Move From Experimental to Certification With Style appeared first on FLYING Magazine.

]]>
https://www.flyingmag.com/we-fly-pipistrel-panthera/feed/ 2
We Fly: Cirrus SR22T 8000 https://www.flyingmag.com/we-fly-cirrus-sr22t-8000/ Thu, 27 May 2021 20:30:44 +0000 http://137.184.62.55/~flyingma/we-fly-cirrus-sr22t-8000/ The post We Fly: Cirrus SR22T 8000 appeared first on FLYING Magazine.

]]>

The bitter cold of a February day in Minnesota in 1999 etched itself in my memory like frost on the windshield of an old Subaru hatchback. As an assistant editor in Jeppesen’s aviation-courseware department, I’d been thinking through the mechanics of flight training every day, working to translate abstract concepts into print and onto the screen. On that day, I was driving a Sube around Duluth in between massive snowbanks, engaged to think through a similar puzzle: how to train pilots to fly a brand-new concept in airplanes, the Cirrus SR20.

I’d been invited to Duluth to interview with Cirrus Design’s nascent training department—before their team determined that they would contract with the University of North Dakota for the airplane’s initial courseware. As part of those 72 hours that tested my potential hardiness in a North Country winter, I had the chance to fly N204CD, just after the SR20′s original FAA certification the previous October. Two flights, actually: one with instructor Gary Black to get accustomed to the airplane’s unique stall-resistant aerodynamic characteristics and one with test pilot Scott Anderson to solidify that first acquaintance.

Now, almost 22 years later, I’m like Marty McFly stepping out of the DeLorean into the future (in this case, greeting the 8,000th SR-series airplane to fly). That promise back in 1999 has been fulfilled—in the carbon fiber of the airframe in front of me, as well as in the Cirrus Vision Center in Knoxville, Tennessee, that has encased into brick and mortar the commitment to training driven by a core Cirrus philosophy.

Cirrus SR22T 8000
The limited-edition paint scheme makes for an aircraft that brightens up even the cloudiest days. Stephen Yeates

Then and Now

I changed course after that first visit to Cirrus, pursuing a track in aviation journalism instead of a sole focus on flight training. Having flown several iterations of the SR20 and SR22, I’m struck by the evolution in the intervening years that has transpired into the latest models for 2021; it’s appropriate to the company’s foundations, to explore the potential of single-engine aircraft.

The first game-changing SR20 was delivered in late 1999, and the SR22 gained certification in November 2000, with a jump from the Continental IO-360 to the more powerful IO-550 engine, along with more room and weight-lifting capacity. Cirrus Design evolved into Cirrus Aircraft—and the changes have never ceased.

Improvements in composite manufacturing have shaved off pounds from the empty weight of the SR20 and SR22 along the way. The glass-panel generation began in 2003, with the Avidyne Entegra suite in the SR22 G1—and transitioned pilots to the concept of a large-scale primary flight display. When Cirrus went to the G2 in 2004, both the SR20 and SR22 were equipped with the Entegra. In 2008, both models converted to the Cirrus Perspective by Garmin at the same time (an elegant riff off of the G1000) with GPS navigation, traffic data, weather and other components integrated into one place for the pilot—with Avidyne as an option for both.

Cirrus Aircraft pumped out the SR series at a rate that has fluctuated with the economy, starting with nine SR20s delivered in 1999, 95 SR20s the following year and 124 SR22s in 2001. The outflow hit a high point in 2006 and 2007, with 721 and 710 total Cirrus aircraft, respectively, out the door (including the short-lived SRV, of which only 37 models were made). When the turbo model, the SR22T, came on the scene in 2010, it boosted the SR22′s sales, which had dropped by 60 percent following the economic recession in 2008.

Cirrus SR22T 8000
The composite four-blade prop has Volt striping on its tips. Stephen Yeates

As of 2019 (the latest data from the General Aviation Manufacturers Association at press time), 7,645 SR models had been delivered. For various reasons, the company hasn’t given too much fanfare to previous milestones, but with the 8,000-SR mark looming on the horizon—and, frankly, a serious need to have some fun after the gloom of 2020—the team decided to celebrate in the way that a company with serious marketing chops would: Let’s make a special edition!

To this end, Cirrus has created a series of eight SR22Ts, starting around number 8,000, in a limited-edition run guaranteed to catch attention on the ramp once the company releases these flying works of art into the wild.

The SR22 G6 Perspective+ upon which the limited-edition series is based debuted in early 2017, and there has been speculation as to when a new model will land on the scene. Product-line director Ivy McIver demurred when I asked her, and she noted that the company is at work on the overall alignment of the product lines, as well as a focus on special packages highlighting the incremental updates that have been made to the highly capable G6.

Related: Cirrus Celebrates Milestone with Limited-Edition SR22Ts

Really, there’s not a whole lot that’s missing just yet, and the package that Cirrus has created for the eight airplanes in this series hits several high notes. According to McIver, “Each aircraft includes an exclusive ownership experience which will play out over the first six months of 2021 and culminate in a VIP event midyear once each of the owners has taken delivery of their plane—and only the eight owners will know the details of the experience.”

Included as special treats on the series: Max-Viz enhanced vision system, TKS ice protection system, and a silky smooth four-blade lightweight composite Hartzell prop with trim paint producing a super-cool prop arc as the photos make evident. That’s all wrapped up with a five-year, 1,500-hour maintenance plan and a five-year, 2,000-hour spinner-to-tail warranty program.

Cirrus SR22T 8000
Perforated leather not only ­underlays the pilot’s grip on the yokes but also on the power lever and other handles in the interior. Cirrus Aircraft

A. Bespoke rudder pedals carry on the neon theme, serving a purpose to illuminate a dark area on the flight deck where loose items, such as a pen, stylus or smartphone, often go missing.

B. The power lever combines throttle and propeller control, and it features a “TOGA” button to initiate on takeoff or for a go-around, popping up chevrons on the flight director to indicate pitch and heading to fly.

C. The primary flight display offers several options for the horizontal-situation-indicator presentation, including the ability to underlay traffic or map data.

D. A full Qwerty keyboard plus numbers illuminated in blue make for easy entry, even in choppy air. The number keys are tied to a given mode indicated by a blue arrow (COM or XPNDR, for example) to reinforce the entry mode.

E. On the MFD side, engine management, VFR and IFR charts, and weather options join SiriusXM radio to provide layers of information as well as in-flight entertainment.

Cirrus SR22T 8000
The scheme extends across the cowl, echoing runway markings. Cirrus Aircraft

About that TKS

Prior to my flight in the very latest SR22T, I visited the Cirrus Vision Center and took advantage of a reacquaintance flight in a normally aspirated SR22, for comparison’s sake, with McIver. Though the reported weather in Knoxville can rarely out-freeze a winter metar in Duluth, the chill on the ramp definitely felt appropriate for early December as we stepped out of the hangar for a preflight.

We had a pilot report both from my own flight earlier that day and various confirmations of icing from the commercial aircraft making the approach from the south into Knoxville. Fortunately for our mission, our mount had the TKS deicing/anti-icing system installed, providing for flight into known icing. Combined with a high ceiling and surface temps above freezing, having a FIKI-approved airplane meant we could go rather than wait.

Bringing the SR22 into FIKI was important to Cirrus since the early days on the model. The airplane’s utility as a four-season personal transportation vehicle depends upon it, at least to a company based in a part of the US where winter weather hangs around for months.

Do pilots think through the ramifications of launching into known ice, though, or does having the TKS impart a sense of invulnerability? That’s a topic worth further examination, but it matches another core Cirrus philosophy to give the pilot the latest tools and then train them in applying good decision-making to their application.

Cirrus SR22T 8000
The door sill shows the limited edition. Stephen Yeates

We knew from McIver’s Cirrus IQ-powered app on her smartphone—which remotely queries the airplane for fuel, TKS fluid levels and other parameters via a Wi-Fi connection—that we had a full measure of fluid on board (8 gallons) even before we checked it during preflight. We ended up using the fluid preemptively during the climb and for several minutes after breaking out on top, in order to ensure the leading edges were clean.

The flight plan gave us a chance to run the Cirrus Perspective+ through its paces in short order, like a greatest-hits playlist from more than 15 years of development. We initially had filed for a short hop over to Asheville Regional Airport (KAVL), in North Carolina, but amended the clearance so we could maneuver while VFR on top and pick up a segment back into KTYS, to minimize our time in the clouds. While SiriusXM weather gave us regular, if latent, updates on the level of moisture in the clouds below, the enhanced vision system provided a real-time view of the actual cloud tops in our path—extremely handy if we had been flying at night. The terrain view provided by the synthetic vision system onto the PFD similarly illuminated just how lumpy the Appalachians were below us.

Check Out Other Reviews: We Fly

A dual alternator/dual main bus system plus an essential bus provide the electrical horsepower behind the Perspective suite, along with dual air-data computers for cross-compare redundancy. A crew-alerting system on the PFD warns of any miscompare or failure, with the ability to manually shuttle between the two ADCs. I flashed back to times traversing the same area over the mountains, and it reinforced my thinking that even though pilots still can’t rely fully on “the magic” with all of its redundancy to keep them out of trouble, proper use of it sure adds a level of safety I gladly embrace.

With all of the options loaded on the SR22 I flew first, the “Eight Grand” series promised to take the experience up a notch. So, a couple of weeks following my trip to Knoxville, McIver brought the hard-to-miss N225HL up to Hagerstown (KHGR), Maryland, so my introduction to the latest SR could be complete.

Cirrus SR22T 8000
The wheel pants carry the runway-marking highlights Stephen Yeates

Highly Charged Performance

The opportunity to fly both the normally aspirated G6 as well as the turbo model (which the 8,000-series airplanes are) for this report gave me the chance to directly compare performance metrics between the two. Knoxville’s field elevation (981 feet) is nearly identical to that at Hagerstown (703 feet), and the outside air temperature was—unfortunately for us—hovering around 2 degrees Celsius on both days, with light winds, making for a fair comparison.

Cirrus standard operating procedure calls for a special inclusion in the before-takeoff checklist that is an extension of the emergency/loss-of-power-after-takeoff briefing that should be part of everyone’s repertoire—the Cirrus Airframe Parachute System. Following the safety standard that the decision to use a parachute should be made prior to the moment of truth, Cirrus has outlined a protocol in which you consider the runway length and disposition, as well as any terrain in the departure area. This information helps determine the altitude at which you would pull the chute in the event of an engine failure. Since the CAPS recommended minimum deployment altitude is 600 feet, with a field elevation of roughly 700 feet msl, we briefed the following:

• From takeoff roll to 1,300 feet msl, land straight ahead—hopefully on the runway remaining. (We had roughly 7,000 feet available on Runway 27.)

• From 1,300 feet msl to 2,700 feet msl, deploy the CAPS.

• From 2,700 feet msl and up, assess your options and likely return to the airport—or deploy CAPS if no better options exist.

At KTYS, we took up less than 2,000 feet of runway in the SR22, while a full-power takeoff in the turbo model at KHGR took up a little bit less. Rpm on both models is governed (2,500 on the SR22T and 2,700 on the SR22), so moving the power lever full forward takes you to 110 percent power for takeoff in the turbo and 100 percent in the SR22. While the power lever combines throttle and prop controls, the mixture remains separate. The engine-management system provides a green arc on the fuel-flow display indicating the range in which the mixture should be set, with a cyan line for the recommended fuel flow in certain cases.

I contemplated the complexity that the underlying system required in order to create a simple power interface that reduces workload. And yet, Cirrus made the decision to give the pilot the task of actually adjusting the mixture. Why? I’ve concluded that it’s because pilots just need something to fiddle with, rather than for any big performance or efficiency reasons.

Cirrus SR22T 8000
The interior displays the bespoke leather craftsmanship, in its contrast stitching and other details. Stephen Yeates

On this flight, we had a solid deck around 9,000 feet msl—and no desire to plague Potomac Approach with our maneuvering on an IFR flight plan—so I put the airplane through a standard profile of slow flight, steep turns and stalls at 7,500 feet msl. An angle of attack display on the PFD next to the airspeed tape verified just how close I was to a stall all along the way. Aileron response has been a hallmark of the SR series from the beginning—pushrods make for immediate gratification when you input a roll command. And I noticed that the ergonomics of the yoke have improved significantly since early days.

Climbing back to 7,500 feet and leveling off, I pushed up the power for a couple of speed runs. Going from 85 percent power (the standard power setting) to full throttle (110 percent power), we only saw an increase in true airspeed of about 5 knots—and, resetting the mixture into the green arc, roughly 36 gph in fuel flow versus 19 gph. So, unless you are literally in an air race and willing to suck down twice as much gas, it’s not worth it to go beyond 85 percent. Power management is easy for maneuvering (50 percent power to capture VO), descent and approach (25 to 35 percent power), and pattern work (about 30 percent power).

As for that approach: The 50-percent-flap speed at 150 kias makes it easy to start slowing down, with 110 kias the target for full flaps. Airspeed control is always critical on approach and landing, and the SR22T has a faster approach speed than a lot of the piston singles from which many new Cirrus pilots transition. Couple this with a potentially distracting stack of avionics in the panel, traffic and/or ATC instructions, and it’s a recipe for pilot overload on the critical descent, approach and landing segments—whether you’re flying IFR or VFR.

However, hewing to a stabilized approach can be simplified by “flying the doughnut” on the vertical airspeed tape. The small green circle indicates the calculated reference speed for the aircraft and conditions. Introducing a pilot to the concept of flying VREF for a stabilized approach not only sets the stage for excellent speed discipline but also makes the transition to flying approaches in turbine aircraft (read: the Vision Jet) that much easier. As with other instances in which Cirrus makes the complex simple, the “doughnut” doesn’t absolve the pilot of understanding the kinesthetics of the airspeed control on final—and it won’t keep you from bouncing a landing when you touch down. You need to perfect that yourself.

Cirrus SR22T 8000
While it’s hard to miss the electric Volt green of the wings and along the fuselage, a closer look ­reveals rapt attention to aesthetic detail. Cirrus Aircraft

Details

Back at the FBO, Rider Jet Center, we took another walk around the eye-catching SR22T to fully soak in all of its ramp appeal. While it’s hard to miss the electric Volt green of the wings and along the fuselage, a closer look reveals rapt attention to aesthetic detail. The number “8” on the cowl echoes a runway designation; the paint-scheme designers took their cue from the airport environment. Those markings are also reflected in the striping on the wingtips, wheel fairings, cowl and empennage. The resulting look nearly vibrates with energy.

Plus, Easter eggs such as the words “limited edition one of 8” on the door sill further tip off the custom nature of the interior and exterior finish. Perforated leather not only underlays the pilot’s grip on the yokes but also on the power lever and other handles in the interior. Highlight stitching on the rich black leather seats takes a cue from airshow pilot Mike Goulian’s SR22T, with its sporty red-and-black styling.

The Spectra exterior lighting system was introduced with the G6 in 2017—Whelen Engineering partnered to develop the wingtip light assemblies and other elements—and it has proven its value. It incorporates the snazzy landing-zone LED strips on the tips, as well as the highly visible light cluster forward for landing/taxi lights and position lighting. There’s a landing light in the nose bowl as well, but according to McIver, it’s not required; the brightness of the wingtip lights is more than adequate for illumination. With the touch of a remote fob, downwash lights in the step area and under the wings add more visibility in low-light conditions.

By the time you read this, the secret will be out, and No. 8,000 will be off to its new owner, along with seven companion SR22Ts that exemplify the pinnacle of what Cirrus has achieved since its inception. Those neon wings are hard to miss, and we can only anticipate what Cirrus has in store next.

Cirrus SR22T G6 Perspective+ Limited Edition Specs:

Price (as equipped): $1,197,400
Engine: Continental TSIO-550-K Propeller: Hartzell four-blade, constant speed, composite blades
Horsepower: 315 hp at 2,500 rpm Seats: 5
Length: 26 ft. Height: 8.9 ft.
Interior Width: 49.3 in. Interior Height: 49.7 in.
Wingspan: 38.3 ft. Wing Loading: 24.8 lb./sq. ft.
Power Loading: 11.4 lb./hp Max Zero Fuel Weight: 3,400 lb.
Max Takeoff Weight: 3,600 lb. Empty Weight: 2,495 lb. as equipped
Max Baggage Weight: 130 lb. Useful Load: 1,105 lb. as equipped
Max Usable Fuel: 92 gal. Max Operating Altitude: 25,000 ft.
Max Rate of Climb: 1,203 fpm Cruise Speed at 85% Power: 177 ktas
Max Cruise Speed: 213 ktas at FL 250 Max Range: 1,021 nm with 45-min. reserve
Stall Speed, Flaps Up: 74 kias Stall Speed, Full Flaps: 64 kias
Takeoff Over 50 Ft. Obs: (ISA, sea level) 2,080 ft. Landing Over 50 Ft. Obs: (ISA, sea level) 2,535 ft.

This story appeared in the March 2021 issue of Flying Magazine

The post We Fly: Cirrus SR22T 8000 appeared first on FLYING Magazine.

]]>
Blackhawk Aerospace’s King Air 350 Fulfills the Need for Speed https://www.flyingmag.com/we-fly-blackhawk-king-air-350/ Mon, 19 Apr 2021 20:08:29 +0000 http://137.184.62.55/~flyingma/we-fly-blackhawk-aerospace-king-air-350/ The post Blackhawk Aerospace’s King Air 350 Fulfills the Need for Speed appeared first on FLYING Magazine.

]]>

What aviation aficionado hasn’t watched the iconic 1986 hit movie Top Gun, the story of Maverick, a US Navy F-14 pilot portrayed by actor Tom Cruise? In an early scene with co-star Anthony Edwards, the pair is walking among a bevy of parked F-14s when Maverick’s overcome with the need to yell, “I feel the need—the need for speed,” in a high-fiving moment of excitement.

Sounds like most pilots, not to mention the people riding along with them. Flying brings great joy to all of us, but it’s also about traveling from one place to another—fast. Business aviation, in fact, is built around the need to turn useless hours on the airlines into productive time spent aboard a GA machine. That’s why pilots upgrade from a Piper Archer to a Beech Bonanza, then to a Baron or single-engine turboprop. Everyone wants to arrive just a little sooner while carrying more people and stuff.

Over the past 40 or 50 years, an entire industry of aftermarket modifications has emerged to squeeze every ounce of performance from airplanes of all sorts, especially for people who still love the airplane they already own or don’t want to spend the cash on a new one. There are often added bonuses to upgrading some airplanes: the increase in overall aircraft value and bringing it closer to the holy grail of modifications—making the airplane perform better than an original OEM machine at a far lower cost. By far, one of the most popular upgrades is switching powerplants.

Blackhawk Aerospace has created its own market for engine upgrades over the past 21 years through a knack for knowing which aircraft are worth the effort. The company has upgraded the engines on Cessna Caravans, the Cessna Conquest II and practically every King Air model Beechcraft ever produced, all using some version of Pratt & Whitney Canada’s venerable PT6 engine. Blackhawk also brokers turboprops of all kinds and offers in-house composite design, prototyping, building and certification services.

Blackhawk King Air 350
A Blackhawk King Air 350 even outperforms Beech’s new stock 360 in several parameters. [Glenn Watson]

The real value behind a Blackhawk product only emerges once a potential customer understands a bit of the company’s origins. The Waco, Texas-based performance-improvement company opened its doors in 1999, not long after founder Jim Allmon left his job with RAM Aircraft. He remembers talking to RAM Aircraft president Jack Riley. “I told him he had an amazing product, but that he should think about taking the company to the next level by doing upgrades to turboprops.” Allmon says Riley didn’t share his enthusiasm. “I decided it was time to go back out on my own, since I’d done it before.” So Allmon started buying and selling aircraft. He eventually ended up owning a local Waco FBO, a maintenance shop and a flight school with his two partners, Matt Shieman and Dale Griffin.

Allmon says the engine modification side of the business really began to take shape almost coincidentally when a friend approached him, suggesting he take an engine upgrade STC on a Cessna Conquest I that was in on trade for another airplane. Four or five months later, Allmon bought the STC. But he had to explain the market for engine upgrades he envisioned to his partners—which Allmon saw as a really big opportunity. “I told them I imagined a contract with Pratt & Whitney to buy new engines to manage this STC. I saw the PT6 as pretty much the plug-and-play engine.”

Both of his partners were CPAs and pretty financially conservative, Allmon says. “Both of them said they weren’t interested. ‘Show us a company out there doing this kind of thing.’” There wasn’t any company like Allmon was suggesting. Because he’s not the kind of guy to take no for an answer, Allmon said to them, “I believe in this idea and vision so much that I’ll sell you my stock in this company we have together and go out and do this on my own.” A move like that would have left his partners in charge of the FBO, shop and flight school—a proposition they weren’t all that thrilled about—so they agreed to give his idea a try. “It’s been a great partnership ever since,” Allmon says. To date, Blackhawk has purchased some 1,800 PT6 engines for aircraft-modification work. The company doesn’t handle all of the physical work in Waco, relying on a number of dealers such as Stevens Aerospace, Elliott Aviation, Ballard Aviation, Silverhawk Aviation and Textron Aviation to handle some of the load.

Blackhawk King Air 350
Demo pilot Paul Armstrong next to the PT6A-67A. [Glenn Watson]

Blackhawk’s latest package—the XP67A upgrade—swaps a stock King Air 350′s 1,060 shaft horsepower P&W PT6A-60As for 67As and replaces the standard four-blade Hartzell metal props with German-made five-bladed MT composite propellers. The upgraded engines are derated from 1,800 shp to 1,200 shp yet increase available horsepower on the modified airplane by 24 percent, allowing them to maintain rated power to the rarefied flight levels that produce much faster climb rates and higher cruising speeds.

Company-provided background material claims a modified King Air 350 is capable of a 60 percent increase in climb rate, a cruise speed of at least 332 ktas and a 62 percent increase in payload. The upgraded engines also carry an increased Pratt & Whitney warranty good for 3,600 hours. When it comes time to decide whether to modify, Pratt & Whitney offers a nudge in the form of engine core credits of up to $70 per hour per engine for every hour remaining up to the factory TBO. Blackhawk says operators flying at least 500 hours per year will experience a savings of $90,000 in annual operating costs. The company website claims, “Nearly every Blackhawk-powered aircraft sold within 500 hours of the upgrade recovered close to or more than the combined investment of the airframe and engines.”

Edwin Black, the company’s senior vice president of sale and marketing, answered some of the other questions often on the minds of stock 350 owners. “The price range [for the 67A upgrade] will vary depending on core-engine status. If you were on the [Eagle Service] plan from Pratt, the cost to upgrade can be as low as the $800,000 range. We have had 10 operators on ESP upgrade so far. If you are not on the ESP and the engines are timed out, a ballpark estimate is in the $1.8 million range (exchange). This compared to a typical overhaul cost of $800,000 for the first run, $1 million for the second run, and we have even seen three third-run overhauls in the $1.5 million range (for both engines). Point being: Never risk overhauling a third-run engine. And our price includes two new MT five-blade props.” Blackhawk says the time it takes to modify a King Air 350 with the 67A package runs about 2 to 3 weeks (10 to 15 working days).

Blackhawk King Air 350
Blackhawk replaces the original Pratt & Whitney Canada PT6As with a pair of brand-new flat-rated PT6A-67As, while five-blade MT composite props take over from the original Hartzell metal propellers. [Glenn Watson]

Putting XP67A Through Its Paces

We recently had an opportunity to put a modified King Air 350 to the test for an up-close look at the 67A modification. Paul Armstrong, general manager of SkyWest Aviation—also an A&P with inspection authorization—flew a King Air 350 up from Waco, Texas, and met me at Signature Flight Support at Chicago Executive Airport (KPWK). SkyWest Aviation operates N333HC for its owners.

N333HC was built in 2000, some 18 years before the then-owner made the decision to purchase the XP67A upgrade. Because the airplane arrived for the Blackhawk modification with a Garmin G1000 package, the upgrade also required turning the avionics into the Garmin NXi to ensure compatibility with the engines. The aircraft was also modified earlier with the CenTex fuel tanks.

Stepping into the cockpit of this King Air 350 was like a trip back in time because Beechcraft didn’t change much on its popular turboprop. Even relatively new, the airplane’s panel was still adorned with analog dials and toggle switches. The only clue you were inside an airplane built in the 21st century were those Garmin G1000 avionics. As Armstrong and I taxied to Runway 16 at KPWK, I noted the outside air temperature was at 32 degrees Celsius, or roughly 90 degrees Fahrenheit. There were three of us on board, including Blackhawk’s chief pilot Chris Duncan and about 1,250 pounds of fuel per side. The CenTex saddle tanks were empty. We calculated our takeoff weight at 12,470 pounds, about 2,500 pounds under maximum gross takeoff weight. With an empty weight of approximately 9,955 pounds and a useful load of 5,145 pounds, this airplane carries full fuel and still has room for 1,534 pounds of people and bags.

Blackhawk King Air 350
Fill the tanks on a Blackhawk 350 and carry eight people out of 4,000-foot strips. [Glenn Watson]

One reason there’s really no training needed after a Blackhawk upgrade is that all the standard takeoff and landing numbers remain the same; only the engine operating parameters change, keeping in mind that single-engine performance up high improves significantly. Blackhawk provides a complete flight-manual supplement highlighting the new cruise and single-engine performance. One item of note for longtime King Air pilots using the new propellers is the elimination of the low-pitch propeller stops. In the stock 350, weight on wheels makes the props automatically flatten out. Armstrong said one annoying issue was that the original props didn’t always change pitch at exactly the same moment, resulting in the airplane often wigwagging down the runway on landing. Now, the props change in a coordinated fashion on landing.

We filed an IFR flight plan northeast toward Traverse City, Michigan, to allow time to climb and evaluate the aircraft, but the lengthy segment turned out to be unnecessary because the airplane climbed so quickly. Remember, we were light. On takeoff, torque came up to about 80 to 90 percent with the propellers set to 1,700 rpm, knowing torque would eventually rise as we began the roll. By rotation, the engines were set at 100 percent. Once the gear disappeared, we pulled the props back to 1,600 rpm.

For demonstration purposes, Armstrong suggested an airspeed of 140 kias which translated into a deck angle of 10 to 11 degrees and a climb rate close to 4,000 fpm. He said he normally uses 160 kias for a deck angle near 7 degrees, which is a little more comfortable for people in back and for keeping an eye out for traffic, even though we were snuggly ensconced in the Chicago Class B airspace. The outside temperatures were quite a bit higher than ISA that day as we climbed toward 14,000 feet msl. I watched as the interstage turbine temperatures slowly began inching toward the magic 840-degree limit. Chicago Center briefly stopped us at 15,000 and turned us northwest toward Milwaukee before letting us continue to 17,000 feet.

Blackhawk King Air 350
Stepping into the cockpit of this King Air 350 was like a trip back in time because Beechcraft didn’t change much on its popular turboprop. [Glenn Watson]

Just to make things interesting, Armstrong pulled back the left throttle to idle to demonstrate single-engine climb performance, though we didn’t actually feather the prop. The OAT was ISA+18, and we were now cleared to FL 230. As we initially slowed to 140 kias, the rate of climb remained steady at 1,500 fpm. Armstrong said his preferred single-engine climb speed was 125 kias. As he let the aircraft seek that number, the climb rate eventually slowed to 1,200 fpm and stayed put through FL 220. “I can go practically anywhere in the US, and this airplane will climb on one engine,” he said. Think about that when you lose an engine in most other twins, especially if there’s ice or mountains hiding inside the clouds.

Diving into the updated aircraft flight manual, the data showed that at our weight, the aircraft would have continued on one engine up to FL 260. At maximum gross weight and ISA+20C, we could have made FL 240. Though the book shows no numbers above 24,000, Armstrong said, “I could fly it to 28,000 feet with just one [air-conditioning] pack” to maintain cabin pressurization. The King Air 350′s cabin rises to 10,000 feet once the airplane reaches its service ceiling of FL 350.

We added back the good engine as we headed to FL 290, our final altitude. Armstrong said, “Flight Level 280 to 290 is really the sweet spot with this airplane.” The ITTs remained steady at just under 820 degrees. “Although this airplane will run all day long at the maximum ITT of 840 degrees, I don’t run my engines too hard. I like 817 ITT in cruise. My rule is to run them 20 degrees shy of max unless I need it,” even though he says he won’t push them above 835 degrees, except in an emergency. “On a standard day, this airplane will average 2,500 fpm to FL 300,” he added.

Leaving FL 270, the airplane was climbing at 1,650 fpm. Once we reached FL 290, we let the airplane accelerate for about five or six minutes before pulling the propellers back to the standard cruise rpm of 1,500. It didn’t take long before I saw 333 knots of true airspeed. On a flight up high, say FL 320 or above, Armstrong regularly plans a fuel burn of 800 pounds the first hour and 700 for the second and third. The book says that at this same altitude on an ISA+20 day, but with the aircraft at max gross weight, cruise speed will slow to about 294 kias.

Blackhawk King Air 350
Blackhawk founder Jim Allmon and his two partners have, over the past 21 years, upgraded more than 1,800 Pratt & Whitney PT6-equipped aircraft. [Glenn Watson]

What Pilots Are Saying

Daniel Blazer and his dad both fly their Blackhawk 67A-modified King Air 350 in support of their retail and wholesale food company, as well as to keep an eye on their fleet of container ships. They’ll sometimes operate the airplane single-pilot and, at other times, with two pilots up front on trips that include legs between Atlanta and St. Petersburg, Florida (400 nm), and to ports along both coasts of Mexico (1,000 to 1,500 nm).

“We’ve owned a number of King Air 350s with the 60A engines on them,” Daniel says. When they began thinking about upgrading one of them—a 2012 airframe equipped with Garmin G1000 avionics—a deciding factor turned out to be Pratt & Whitney’s willingness to negotiate on core time as the engines neared another hot section, a strategy probably made easier by the airplane’s ongoing enrollment in Pratt’s ESP Gold program. The Blazers were one of the first to purchase the newest Blackhawk upgrade, and they used Elliott Aviation in Moline, Illinois, for the work, including upgrading their Garmin panel to the NXi version.

With a couple hundred hours logged on the new airplane, Daniel Blazer says: “This airplane climbs really nice through the mid-20s. The stock 350 started slowing just leaving 10,000 feet. Now we’re often climbing at 1,500 fpm up to the 30s where the fuel flows are running about 640 pounds total per hour. On the old airplane, we never cruised too high and often had to run the engine ice, which slowed us down even more. Now, we just use the engine anti-ice to climb through the weather. In cruise, there’s probably a 40-knot difference between the old airplane and the Blackhawk version.” Anything he wishes he could add to the Blackhawk upgrade? “The MT props don’t connect into the Beechcraft active sound-management system. It would be nice to figure out a way to make that work. But there’s nothing else really…except maybe I wish it would go a little faster.”

Paul Armstrong says the company for which he flies N333HC “was originally looking at [a Cessna Citation] CJ3+ for 1,800-mile trips. But some of our destinations require [that we operate out of] hot, high and short runways, and I was worried we might have performance issues in the mountains. In the [Blackhawk King Air], I can fill the tanks and take eight people out of 4,000-foot strips. It’s a monster as far as what it will haul. Jets cost two to three times more, and we’d only gain about 12 minutes an hour on a two-hour trip. This airplane with the 67As is like a whole new animal. Now we don’t need a jet. This is the most amazing plane I’ve ever flown. It really does what they say it will.”

This story appeared in the October 2020 issue of Flying Magazine

The post Blackhawk Aerospace’s King Air 350 Fulfills the Need for Speed appeared first on FLYING Magazine.

]]>
Flight Design’s F2 is An All-Around, All-Composite Light Sport Aircraft https://www.flyingmag.com/we-fly-flight-design-f2/ https://www.flyingmag.com/we-fly-flight-design-f2/#comments Mon, 05 Apr 2021 19:58:11 +0000 http://137.184.62.55/~flyingma/we-fly-flight-design-f2/ The post Flight Design’s F2 is An All-Around, All-Composite Light Sport Aircraft appeared first on FLYING Magazine.

]]>
The angle of attack readout on the PFD wasn’t the first thing that caught my attention. No, that would be the unending cry of the audible stall warning as we just couldn’t catch a break. We began a steady descent, nose high, and slowed somewhere below 39 knots.

We were flying rather well, all things considered; I could maneuver the F2 around within this part of the envelope, practically begging it to fall off and drop its nose past the horizon. It didn’t comply. Instead, with a little push of the stick and throttle, we flew right out of the deep end of the slow flight regime as soon as the airplane was asked.

The Flight Design F2 reflects well the aerodynamic understanding and advanced avionics technology driven into the design. After the company’s CT series gained a reputation as a somewhat fussy airplane to fly, the F2 turns that impression on its head.

Flight Design F2 flight deck
In the fully equipped avionics package, having a Garmin G3X Touch flight display on the right side as well as the left helps out instructors too. [Courtesy: Flight Design]

1. The 10.6-inch screens can show a full-screen PFD and engine cluster, as well as split into various PFD, MFD or engine-indication formats.

2. An optional Garmin G5 supports the main hardware with a solid backup. A Garmin GFC 500 autopilot can be installed as well.

3. Panel-mounted AmSafe air bags are a unique feature in the class, and they complement the standard BRS ballistic airframe parachute.

4. A Garmin GMA 342 audio panel and Garmin 345 ADS-B In and Out system completes the fully stacked flight deck.

5. The single-lever throttle-and-brake system simplifies power management both on the ground and in the air.

Flight Design F2
The fuel-injected Rotax 912iS powers the F2, which is aimed at the recreational market—but would also fit into flight training. [Photo: Glenn Watson]

New Ownership

The clean-sheet design that comprises the F2 comes from the rebirth of the company that created it. Flight Design evolved from a small business building ultralights and gliders into an airplane manufacturer in 1988, managed by its founder and visionary leader, Matthias Betsch. However, financial troubles dogged its existence, and while the CT series of microlight (in Europe) and light-sport category (in the US) aircraft proved reasonably successful in both the US and Europe (see sidebar), new designs were hard to fund and get off the ground.

Those fortunes changed in 2017, when Flight Design was purchased by Lift Air, a division of Lift Holdings and financially supported by Lindig Group, an industrial manufacturer in Germany. With a new infusion of capital and leadership under managing director Daniel Guenther, Flight Design began the development program on the two-seat F2 series and a four-seat F4. The new models debuted at Aero Friedrichshafen in 2019.

Siemens has joined forces with Flight Design to support an electric version, the F2e, with a proof of concept that debuted in summer 2019. But the first out of the gate will be the traditionally powered F2. As of November 2020, P2—the second prototype of the standard F2 flown for this report, which will meet light sport aircraft standards—has a couple hundred hours on it. The third conforming prototype, P3, is finished and flying in the Czech Republic, and it’s being used to secure European Union Aviation Safety Agency CS23 approval (the rough equivalent to the FAA’s Part 23). The model is now officially in production, and Flight Design expects to have them in the US by the end of January. The F4 project is funded, in development, and projected to debut stateside in summer 2022.

Flight Design F2 wheel
Wheels and brakes remain the same as on CT models. [Photo: Glenn Watson]

The production quality has kicked up a notch, too, for the all-carbon-fiber airframe. Next-gen CNC machined molds are used to make the fuselage in two pieces—the left and the right sides match exactly. Weight savings derived from the switch to Hexcel pre-preg carbon fiber—reducing the amount of epoxy and filler used—pencil out into a higher useful load on an already generous figure for the LSA category.

“Safety sells the airplane,” Tom Gutmann Jr. says. The Gutmanns—Tom Jr. and Tom Sr.—have been with Flight Design since the aircraft were first imported under the new S-LSA guidance in the US. “We’ve worked together for 18 years. They’re really hardworking and cheerful,” says Tom Peghiny, principal of Flight Design USA. The Gutmanns’ company, Airtime Aviation, in Jenks, Oklahoma, has been the distributor for the central and mountain US since the beginning of Flight Design’s tenure stateside. Flight Design USA serves as the importer and distributor for the northeastern US. A network of dealers spans the country.

The Gutmanns have seen the results of better manufacturing, reporting closer fit on the doors and cowling in particular, which bodes well for maintaining the airplane more easily in the field. The F2′s wider than the CT series too, according to Tom Jr. With a standard BRS ballistic recovery parachute and an AmSafe air-bag system, safety is indeed part of the F2′s DNA.

The main landing gear saw an overhaul as well: Instead of separate gear legs attached to the left and right undersides of the fuselage, a single carbon-fiber strut carries through the belly. The result is much better dampening on landings, which I experienced firsthand during my initial touchdowns during our flight test. This should help the F2′s placement in a flight school lineup, mitigating student errors that the previous designs may have exacerbated.

Flight Design F2 wing
Winglets improve low-speed handling. [Photo: Glenn Watson]

The Walk-Around

From a few feet away, aerodynamic twists such as the elegant upswept wingtips point to the F2′s potential to handle well at low speeds. A leading-edge cuff on the outboard portion of each wing speaks to this, as do the bigger horizontal stabilizer and sizable vertical fin. The CT series had a stabilator, which contributed to the finesse required to land it well. The F2 moved to a separate elevator system that is split into left and right halves with a “beaver tail” in between.

Hidden beneath the wing structure lies another big change: The F2 has a carry-through spar running the full span, rather than the overlapping two-spar system in previous models. A rugged cockpit capsule in the fuselage continues the Flight Design’s legacy of crashworthiness.

Up front, the powerplant remains the same—the fuel-injected Rotax 912 iS—but Airtime is testing new propeller combinations. The latest one, from Sensenich, has a sexy scimitar sweep to its tri-blade tips. The team had 10 hours of testing on the new propeller when we flew the airplane, and more testing is needed.

There’s another advantage to the Sensenich prop as well: “We’re trying to increase the US content on the airplane,” Peghiny says. “There’s no downside on US equipment, and it helps insulate the retail price from currency fluctuations. It’s nice to say 45 percent of the aircraft is made in the US—but it also insulates us.”

The oil system has a dry sump, which means that unless the engine has been running, the oil won’t register in range on the dipstick even when there’s enough oil in the system. A “Rotax burp” to move oil up into the system becomes part of the preflight on the first flight of the day, or after it’s been parked a while. A split intake serves both the oil-cooled and water-cooled portions of the engine.

Other than that, there are no real surprises on the preflight. Soon enough, we’re ready to strap in and see how the F2 flies.

Flight Design F2 side view
Clamshell doors can stay open for taxiing. [Photo: Glenn Watson]

First-Flight Impressions

Tom Jr. pointed out a couple of key differences in the F2 cockpit, as compared with other light single-engine piston airplanes. First, the throttle is a single lever—and it also serves as the brake.

Come again?

A full-forward push of the lever gives the pilot full power, as you’d expect. Bringing the throttle back reduces power to idle and then, at the very rearward portion of the throw, engages the hydraulic disc brakes on the main wheels. A valve aft of the throttle charges the system to set a parking brake when needed for a run-up and other actions on the ground.

We started up the Rotax, and I found the system worked surprisingly intuitively once I was taxiing along. Instead of tapping a brake on one side to tighten a turn, I used the steerable nosewheel. Having the system set up this way means you never have a pilot applying power with the brakes on. I weaved my way down the taxiway at Airtime’s home base at Richard Lloyd Jones Jr. Airport (KRVS)—known as Riverside—to feel the responsiveness of the steering prior to taking it onto the runway for the first time.

Following a run-up and ticking items from the checklist, we were cleared for takeoff on Runway 19L. The Rotax ran up to 5,300 rpm as we started the roll—it goes into the yellow arc at 5,500 rpm—and when we got to 50 knots indicated, I started to squeeze back on the stick, and we were soon airborne. We used less than a third of the runway, and I wasn’t even going for best short-field effort on this first takeoff run.

Climbing out at the current VX of 60 knots took us up at more than 600 fpm, steeply angled, while a best rate of climb around 72 knots gave us better than 800 fpm. We needed to stay below the top of the Class D at 2,500 feet msl for a moment, so I dialed it back as we headed for a practice area southeast of the airport.

Flight Design F2 wing
LED position lights reduce operating costs. [Photo: Glenn Watson]

Cruise-climbing up to 3,500 feet once we were free of the airspace, I gave us some clearing turns and enjoyed the fresh roll rate I got from the ailerons. Rudder coordination was almost too easy; I found that it doesn’t take much thought to keep the ball centered, even as we progressed into exploring slow flight and a stall series. And here’s where all the aerodynamics work really has paid off: I tried to mishandle the airplane with that warning sending solid beeps into my headset, but it’s just really hard to make the F2 misbehave.

A power-on stall—even after I slowed it down to 60 knots before the addition of full power—took us skyward, and we were up at such a deck angle before the airplane entered the stall that both Tom Jr. and I expressed how hard it would be to work yourself into that situation. Sure, it can be done, but between the AOA meter on the PFD flashing red arrows and the other cues, it’s hard to imagine getting there unintentionally. The controllability of the airplane in this regime stays positive.

We needed to head back down in order to return to Riverside’s traffic area, so I set up a glide at VG as notched on the airspeed tape. At 75 knots and power to idle, we came down at 800 fpm. Final flap positions were not yet set, but I had a total of 33 degrees to work with on a sliding scale. We used about 16 degrees for takeoff, and that amount could be put in below 90 knots to help slow us down for landing.

Coming into the pattern, the tower sequenced us in between the Pipers flown by the locally based Spartan College, and I found myself high on the VASI for the first landing. At least I was fast too, but getting the F2 below 75 knots for landing isn’t hard once full flaps go in. The last few degrees, in fact, translated into a progressively higher sink rate. My slightly fast touchdown around 65 knots wasn’t bad—but the gear gave me an assist. We did three more touch-and-goes easily on the 4,208-foot runway, and on each one, I got it more dialed in, finding I liked 65 knots on short final, to bleed off to just below 55 for touchdown. Exact specs for landing speeds are a work in progress at press time, but my senses tell me that feels about right.

The F2 demonstrates what’s achievable within the LSA parameters bounding its high and low speeds. With a stall speed (full flaps) at 39 knots, we also see a true airspeed as high as 133 ktas in my cruise-speed test—knowing that the final airplane will conform to the US LSA standard maximum speed of 120 knots indicated. Peghiny sums up the airplane well, “It’s what our customers need: It goes fast, looks cool and is easy to fly.”

Flight Design F2 propeller
The split intake serves the Rotax engine’s cooling needs. [Photo: Glenn Watson]

Another Look

We had a beautiful early November day for our flight test, and that was a good thing because we needed to get photos as well for this story. After we shot the pictures over the autumn-burnished shores of Keystone Lake west of Tulsa, I flew the F2 from the right seat just to see what the perspective would be from an instructor’s standpoint. No concerns surfaced, and I found the transition to the CFI side to be seamless. With a 50-inch-wide cabin, there’s no need to be shoulder-to-shoulder with a student—though I could reach everything I needed.

I have a feeling the airplane will find a good home in training fleets because of its comfortable size, slow-flight handling and student-error-dampening new gear. In the fully equipped avionics package, having a Garmin G3X Touch flight display on the right side as well as the left helps out instructors too; instead of parallax, you have a full array of PFD and MFD info to work with. From the instructor’s standpoint, there’s another bonus stemming from the combination throttle-and-brake system: You’ll never have a student ride the brakes while applying power or touching down with the brakes engaged. With the Rotax, you can use mogas or 100LL—another potential area of savings and convenience—and the 34 gallons of fuel sipped at roughly 4.5 gph will take you a long way.

From a recreational user’s perspective, the F2 will give you everything it can in terms of load-carrying capability. There’s a lot of room for cargo, and though the LSA weight limits apply in the US, when the Part 23 version in Europe is completed, operations under that category will readily accommodate a few more pounds. The F2 comes out of the gate with the Garmin GTR 225 comm and GTX 345 with ADS-B, and owners can equip with a standby Garmin G5 electronic instrument, the GFC 507 dual-axis autopilot, and either the GTN 750XI or 650XI navcom/GPS. Sporty leather seats and automotive-style inertial-reel seat belts keep it comfortable too.

Flight Design F2 top view
Aerodynamic improvements, such as the winglet tips, ­l­­­eading-edge wing cuffs and newly tapered fairings, enhance the F2. [Photo: Glenn Watson]

First Deliveries

Business slowed down in March and April 2020, but then the phone began to ring again at Airtime for the new and used aircraft they broker. “We had some pre-owned airplanes, and they sold out,” Tom Jr. says. As for the F2, Flight Design USA has four on order when they become available; another dealer has two, and a couple more orders are in the works, according to Peghiny. The first are expected to land stateside by the end of January. Airtime has six aircraft that they hope to have by then as well.

FAA has shown they understand the improvements the LSA industry has made. “The experiment, if it was one, has been successful,” Peghiny says. He credits the safety of the LSA industry in no small part to the Rotax engine: “If you keep fuel and oil in them, they are very reliable.”

The line blurs between light-sport aircraft and what we have considered “traditional” single-engine piston airplanes, and I expect that to continue as technology and advanced design sift up through the ranks rather than trickling down. There’s no compromise in this category with the latest generation of light-sport models, and the F2 fits right in.

Flight Design F2 Specs

Engine: Rotax 912iS Horsepower: 100 hp
Propeller: Neuform three-blade CR3 65-inch composite Seats: 2
Empty weight: 835 lb. Max gross weight: 1,320 lb./US LSA limitations
Fuel capacity: 34.3 gal.; approved for premium automotive unleaded, as well as 91 avgas and 100LL Range: 850 nm at 7,500 ft., 55 percent power, 4,200 rpm and 100 kias
Maximum speed: 120 kias/US LSA limitations Cruise speed: 115 kias
Stall speed (neutral flaps): 45 kias Stall speed (full flaps): 39 kias
Wingspan: 30.45 ft. Wing area: 113 sq ft.
Aspect ratio: 8.2:1 Mean aerodynamic chord: 3.83 ft.
Length: 22.5 ft. Height: 7.68 ft.
Cabin Width: 50.5 in. Price (as tested): approx. $198,962

This story appeared in the January-February 2021 issue of Flying Magazine

The post Flight Design’s F2 is An All-Around, All-Composite Light Sport Aircraft appeared first on FLYING Magazine.

]]>
https://www.flyingmag.com/we-fly-flight-design-f2/feed/ 5