JoeBen Bevirt Archives - FLYING Magazine https://cms.flyingmag.com/tag/joeben-bevirt/ The world's most widely read aviation magazine Mon, 20 May 2024 14:41:52 +0000 en-US hourly 1 https://wordpress.org/?v=6.4.4 A First Look at Joby’s eVTOL Future https://www.flyingmag.com/a-first-look-at-jobys-evtol-future/ Thu, 04 Apr 2024 12:40:58 +0000 https://www.flyingmag.com/?p=199763 The production model is ready for flight test, but are we ready to fly?

The post A First Look at Joby’s eVTOL Future appeared first on FLYING Magazine.

]]>
Joby Aviation glows with the shining health of an organization led by a vision drawn from childhood dreams. The California-born-and-bred company, founded by JoeBen Bevirt, feels clear in its purpose: to make the most challenging “last mile” of aerial transport between points an accessible—and quiet—reality.

Bevirt thought up the premise for an electric vertical takeoff and landing aircraft (eVTOL) as he walked home from the last point a school bus could take him near his home in California’s Santa Cruz Mountains. Today, Joby is a roughly $4 billion-cap enterprise on the cusp of its type certification for-credit testing with the FAA on an evolution of the very vehicle Bevirt envisioned would lift him from that dusty bus stop into the peaceful meadow near his parents’ forest home.

From a flying prototype launched in an empty quarry in 2010 to the first flight of the latest conforming production prototype, the final iteration of this initial commercially viable eVTOL will carry a pilot and up to four passengers as far as a 100 sm range solely using electric motors, bringing with it a new way of managing flight.

However, though the Joby aircraft is piloted, the team is not building an aircraft for pilots. By deliberate choice, the idiosyncrasies that make up the kinesthetic joy of flying are dialed out of the aircraft’s flight control system—they have to be in order to make the Joby fly like it does. You can hand fly it, sure, but like other aircraft aimed at owner operators who are new to the game and not interested in the romance of flight, you’re in a version of autoflight all the time. In fact, an autopilot per se is unnecessary because the foundations of autoflight run continuously—designed to manage the cascade of failures and corners of the envelope we train so hard to avoid and mitigate and respond to.

While we can’t yet fly the version slated for the final rounds of type certificate (TC) testing—the production aircraft, in company parlance—we can fly the sim. As one six-month Joby employee at the company’s Washington, D.C., office told me, even they like to fly it—and they’re not into driving themselves anywhere. Being “in control” just doesn’t interest them—quite a change from what we think of as a pilot.

So where is this going? I had to find out for myself. In a series of introductions, I visited Joby’s R&D and production facilities in Santa Clara and Marina, California, last summer and Joby’s offices in D.C. in January, along with an interview with Bevirt at the Paris Air Show in June, which we covered in Issue 940 (“In Depth”).

Six rotors driven by 12 motors deliver both vertical and forward thrust, as well as the means of flight control. [Stephen Yeates]

How It Works

The Joby aircraft consists of a rounded, wide-windowed fuselage to carry passengers with a single pilot seat up front. A wing transects the top at about its midsection, with a V-shaped tail in the back. Six equally sized rotors stand in a roughly hexagonic position: two in front, two at the wingtips, and two aft, on the apex of each V in the tail. They pivot and rotate in such a way as to produce both thrust translating into airspeed and thrust directed for flight control. The aircraft also uses ailerons and ruddervators (akin to those on the Vision Jet or V35 Bonanza). But those are sectioned, with two sets of aileron-style controls on the wings and three sections of ruddervators on the V-shaped tail.

The previous conforming prototype version had flaps, but according to Greg Bowles, head of government affairs for Joby, “they didn’t buy their way onto the production version.” In other words, no need for them. The six motors obtain their juice from a series of battery packs, but these are unlike any created for electric aircraft thus far. They work in pairs for each motor and in isolation from the other pairs so that they are doubly redundant. We learned how Joby arrived at this arrangement—along with other details regarding their makeup—when we walked through the plant at Santa Clara earlier on the day of our visit preparing us for the observation of the remotely piloted demo flight of the preproduction prototype later on.

With an aspect that looks like a helicopter with six rotors instead of main and tail rotors, the quietness of the Joby’s departure struck me immediately. Normally, hearing the main rotor spool up causes you to plug your ears against the sound. But with the powering up and lifting off of the Joby, the high-pitched rpm of the blades barely registered over the wind about 100 feet away.

A New Kind of Motor

The “engine” driving the Joby aircraft is unlike any motor I’ve ever seen. Granted, I’m not versed in much outside of the two- and four-stroke combustion engines that provide thrust for light airplanes and the odd motorbike. But this is essentially a 3D-printed titanium ring. A doughnut of sorts, outlined by a series of copper-and- tan-colored power packs.

A lot of people have asked why Joby didn’t buy motors from another company—with so many electric choices out there on the market. “What we found was that [by] making it fit exactly for purpose, we could do much better in terms of weight and size,” said Jon Wagner—head of batteries, powertrain, and electronics and based at the Santa Clara facility—during our tour. The core starts with a 3D-printed titanium housing in the middle, and the magnetics that drive the rotation are made from copper and steel. “And we buy big rolls of copper and big sheets of steel, and we build this thing up out of the raw materials,” said Wagner. At the D.C. office, Bowles handed me a featherweight bottle opener made from the remnant titanium dust—an elegant example of upcycling waste from the process.

Three pins, and three pins—this is actually two motors, with two sets of three-phase windings. “That’s two different electrical circuits inside this motor that drive the rotation,” said Wagner. “So if you have a failure, you’ve segmented the system and now you have a secondary means of driving the motor.” The electronic brain that’s always on in the background figures out how to redistribute the remaining power, cycling up and down as needed for both thrust and flight control. This requires a new way of managing that control.

Unified in Flight

The world of eVTOL will almost certainly be based on the use of “simplified flight controls”—as outlined in the Modernization of Special Airworthiness Certificates (MOSAIC), which update light sport aircraft (LSA) certification but also set the stage for use of similar regulatory structure in the Special Federal Aviation Regulations (SFARs) covering eVTOLs.

The simplified flight control is simple to the pilot— taking the most basic of inputs and figuring out what the pilot wants to have happen and ensconcing them in a swaddle of envelope protection so they will neither stall nor exceed limit load factors. To do this, those controls are anything but simple under the surface. Joby has patterned these after the unified controls in high-end military hardware, such as the F-35.

The Joby aircraft is flown with a power lever in the left hand and a joystick-style flight control in the right—and you sit in a single seat centered in the cockpit. Though at first it feels familiar, you don’t use the control stick in quite the same way as you do in a traditional airplane—you rarely hold in continuous pressure, for example. So it’s OK that it’s purposefully stiff. You give input, then take it out. The power lever is similarly centering—hold in to speed up in airplane mode, and leave it in place while in TRC (translate, or hover) mode. You twist to yaw about the vertical axis in translate mode, and you bank to either translate or side step while in TRC or bank while flying the wing. But you don’t need to hold back pressure in the bank to maintain a level attitude since the rotors are compensating for the change in lift vector direction.

To illustrate, let’s look at one common failure mode in rotorcraft: One commonality to the Joby is the bearing plate—“but we can get around it,” said Bowles. If there’s a motor failure, the computer picks up load, slows the rotor on the diagonal corner, and speeds up the rest. The aircraft also retains the ability to glide on its wing—so Joby has tested that mode as well—which, as a fixed-wing pilot, I admit helps me wrap my brain around the whole package.

On Speed, On Target

You don’t think of stall speeds and VNE in the same way either, since the aircraft’s flight computers protect you from those exceedances in most all situations. “It is important to understand that the aircraft has 6 propellers and 10 control surfaces along with a rather advanced fly-by-wire control system,” said Jason Thomas, flight engineering lead for Joby, “and those propellers can tilt as well as change their blade pitch…It creates a situation, unlike a traditional fixed wing aircraft or helicopter, where there is more than one way to trim the aircraft at a given state or maneuver.”

How will pilots transition to Joby? It helps that the controls feel fairly intuitive. In my sim flights at Marina and D.C., it took just a few minutes to understand how to take off, land, and maneuver in the traffic pattern at a normal airport—KOAR and KSEA were programmed into the sim—during a standard flight. The FAA has established an SFAR for existing pilots under the powered-lift category—and the goal is to allow them to transition by taking essentially a type-rating course.

As a foundation for its business model, Joby established a Part 135 operation using a Cirrus SR22 between KSQL, Palo Alto, California, and KOAR. It plans to add the SFAR-covered aircraft to the certificate, with a track record in flight operations, maintenance, and safety management with the local FSDO. Similarly, the company has also set up a Part 141 operation, training internal pilots, to which it will add the Joby aircraft.

And the proof, then, will be flying the actual aircraft—and seeing just how that feels as a pilot.


[Stephen Yeates]

Cockpit at a Glance

A. The pair of displays can be laid out in many ways for the pilot. The MFD hosts the power and propulsion system schematic in this view.

B. The primary flight display features a familiar Garmin interface, with airspeed and altitude tapes, plus standardized callouts for winged and vertical flight regime modes.

C. A Garmin GTC-style touchscreen controller also feels familiar to many pilots, following on to the similar control unit found in many new piston and turboprop airplanes and rotorcraft.

D. The power lever on the left side of the pilot’s seat is self-centering and allows for acceleration and deceleration control, as opposed to placing it at a given power setting.

E. The flight control stick self centers as well as twists for yaw control and banks to either turn or translate sideways, depending on the flight mode.


[Stephen Yeates]

Spec Sheet: Joby Aircraft

Price, Projected: Not for sale, operated exclusively by Joby

Propulsion System: 6 electric dual wound motors, 4 on the wings, 2 on the V-tail

Crew: 1

Passenger Seats: 4

Length: 21 ft.

Height: TK

Wingspan: 39 ft.

Maximum Takeoff Weight: 5,300 lbs.

Empty Weight: TK

Useful Load/Payload: 1,000 lbs.

Cabin Width: TK

Cabin Height: TK

Power Capacity: Four lithium-ion battery packs

Endurance: TK

Range: Up to 100 sm (87 nm)

Liftoff Speed: Hover

Top Speed: 170 kt (200 mph)

Landing Speed: Hover

Stall Speed: N/A


With the deepest vertical integration we’ve witnessed underway, Joby isn’t just building an eVTOL but the whole infrastructure, from materials to final production to operations. [Stephen Yeates]

Part Two: Building the Childhood Dream

It starts with a specific type of composite.

The sourcing of the raw materials to make the part that goes into the component that tucks into an aircraft in a strategic place—in the post-pandemic global aerospace industry, that perhaps is not so uncommon.

But when Joby Aviation first began coalescing into reality in various warehouses in the Bay Area southeast of San Francisco, most manufacturers didn’t get involved with the creation of the material—let alone purchasing the raw stuff from which to produce minor hardware in house.

That’s exactly what Joby has been up to since those early days—the development of the requirement alongside the technology needed to deliver the performance and capability of a new type of aircraft. By taking control of every aspect of the requirement to the final disposition of a part, it gets more precisely what it wants.

Diving into the Works

We took a walk around the skunk works—well, just one portion of them—in nondescript buildings, feeling like we were walking through a back lot on land adjacent to the San Carlos Regional Airport (KSQL). Leading the way was the perfect guide, Jon Wagner, as noted, Joby’s head of batteries, powertrain, and electronics. If that job title feels a bit cobbled together, it’s not. He’s the juice guy—how to store it and how to deliver it to the motors as well as the avionics and flight control system.

Working with Wagner is Jason Thomas, flight engineering lead. Thomas came to the company in 2021 from a designated engineering representative firm in Florida called EQ Dynamics. Before that, he worked with Aurora Flight Systems and its UAS concepts, and prior to that, at Honda Aircraft Company and Gulfstream Aerospace, in flutter and structural engineering roles. “I am the sole DER for external loads, aeroelasticity (flutter), and ground vibration testing (GVT),” said Thomas of the fascinating confluence of disciplines that by necessity must cover new territory in just about every mode of flight on the airframe.

The prop blades, for example, land under Thomas’ oversight—with their wide chord and downturned tips to dramatically reduce resonance and, thereby, noise.

“We design and make everything inside the airplane here,” said Wagner, as he kicked off our walk-through of the Santa Clara facility. “Six years ago [in 2017], we flew the first full-scale airplane, and coming out of that experience, we realized that, OK, this airplane works, the concept is solid, and we could architect the business. We made a really important decision—it was right around the time I was joining—that we were going to build up an engineering team to design and manufacture all of the electronic equipment in the plane.

“It started with a discussion about batteries and progressed [to] talking about motors, talking about actuators, talking about all the flight computers, things like that.”

Joby’s founding members decided to hire the team—design, manufacturing, and testing engineers— to create each critical component.

“When you buy something from a vendor, you’re gonna get whatever they have, with maybe some small changes to fit what you need,” said Wagner. “And when you design it yourself, you’re going to get exactly what you need.”

That takes enormous investment and engineering bench depth to pull off—that’s why so many OEMs work with vendors for a long parts list in the construction of an airplane. But CEO JoeBen Bevirt planned to vertically integrate Joby to that level from the beginning.

A significant part of the robot deployment and operational knowledge came from one Joby investor, Toyota. [Stephen Yeates]

How They Got Here

Though the company boasted more than 1,000 employees around the time of our visit—and keeps growing daily—it still feels like a startup. The origin stories encased in various discarded components and updated blueprints lay around in plain sight. We stop in a showroom that’s between engagements, but it still houses one of the iterations of the fuselage and the cockpit and cabin contained therein. The moves Joby has made to determine the best combinations and materials for the interior and exterior it calls “explorations,” and posters walking back through those imaginings line a wall behind the mock-up. It’s like they’re not quite ready to put these pieces in storage yet, because they may gain use or traction somewhere down the line.

Following that experimental phase, the last seven years have been the more traditional aerospace development path, with requirements-based design “fit for purpose.” From scratch, it builds all of the battery packs for the airplane, the motors, and all of the electronics. “With the exception of the pilot interface—that’s the Garmin, we purchase that from Garmin, the displays—but all the rest of the avionics and electronics we build,” Wagner said.

Cruisin’ Down the Coast

Schedules kept us from hitching a ride with Bonny Simi, now president of air operations for Joby, in the Cirrus SR22 it operates. But we made our way nevertheless to the primary production and assembly and flight test operation in Marina, located on the airport there in a series of massive white Quonset hut-style tent hangars—that echoed in a way reminiscent of the big historic hangar at Moffett Field to the north, when it housed the dirigibles and other experimental aircraft in development. Fitting.

Once there, we were going to meet up with Didier Papadopoulos, head of the aircraft OEM for Joby, and the one responsible for much of what was going on inside those hangars. Instead—because we were there right after Memorial Day, our own scheduling concern, we had the next best thing, Scott Berry, a nine-year veteran of Joby. He’s also, tall, ranging, with a preternatural goodness and health emanating from him that feels like a trademark here. Berry has also built a Lancair Legacy and posts an AirCam on his LinkedIn profile. Taking aviation into an innovative direction feels like a natural fit.

“I had this dream that I always wanted to fly a seaplane into this area [Santa Cruz Wharf] and bring my children in and surfboards, put out an anchor, and then fly away,” Berry said. “I literally did that yesterday [in the AirCam on floats].”

The Joby aircraft will take this concept up another notch.

“I got my job because I had started my own eVTOL company,” Berry continued. “I was working for General Atomics…and I always wanted to develop my own aircraft. I was trying to convince General Atomics to do a version of the Predator drone with electrics…and I couldn’t do it, so I started my own company. I came to try and sell my aircraft to [Bevirt while on a holiday in Santa Cruz], and he convinced me to come work for Joby.”

Berry has spent the last nine years developing the design and certification team, running flight tests, and leading the company’s establishment of culture. That’s a critical element when what you’re doing is constantly pushing the human-machine interface—to watch the “human” part of the equation.

Humans and Robots

The production line order was still a bit out of sequence during our visit. At every turn, the interface between man and machine took center stage. We expect the use of robots in a variety of roles in manufacturing—and with Joby, they have been integrated from the beginning. Those integrations resonate in aerospace, but much of what I saw around me has roots in automotive manufacturing. Early on, Toyota invested in the company, and a significant part of its investment lay in the dedication of teams of Toyota colleagues embedded within Joby’s research and development—and that pattern continues as it transitions to production. But wait—it isn’t the same as a traditional transition from R&D and prototyping to building a conforming, deliverable model. Joby has been building the production line as it has developed the string of prototypes, so it would be ready as soon as the final fix was in to start production. That’s what we saw.

First, we toured the composites manufacturing facility, where boxcar-sized automated CNC machines crafted parts and shepherded through components from raw materials to layup.

Then we moved into the next big white tent, through a pass-through, hangar-sized door, on to the assembly and integration facility, where those components would join together into the airframe.

About Lunch

Back to culture now. Douglas Aircraft Company pioneered the concept of providing holistically for its employees, in the supposition that if they were healthy, well fed, and well housed, that security would translate to better job performance, less sick leave, and fewer HR issues. In Joby’s world, that means everyone gets fed, family style, at the Marina complex. But the shared tacos are just an indicator.

“The vibe at Joby is energizing and unprecedented in my career,” said Thomas. “Joby embodies a truly unique and interesting mix of talent, passion, energy, innovation, focus and a can-do attitude that is very pervasive.”

Watching It Fly

During that visit in late May 2023, we had a unique window open to see the conforming prototype fly. The production unit was nearing completion at the apex of the line (also under construction), and though we couldn’t talk about that at the time, we can now.

A small team of specialists hovered around the model, smiles illuminating the obvious pride it felt in being so close to the completion of this next critical stage. Our ability to walk around the unit gave us an opportunity to talk through in more detail how the prototype had evolved into the airframe that would be ready for the final flight-test program of the primary campaign to TC.

In parallel, other teams at Joby are working on the business and operational cases, figuring out how the initial run of aircraft will fit into the national airspace system. “We’re not trying to create segregated airspace,” said Bowles, “but to blend in, working heavily with ATC in key regions that are in the initial target, i.e. [helicopter] routes in New York and LA.”

At the state and local level, the question is, are communities excited and ready? The low-noise profile helps immensely—at 65 dBA at 100 meters away on takeoff (vs. 93 dBA for a traditional helicopter liftoff) and in cruise down to 45 dBA—barely recognizable over the wind noise, as we discovered on the ramp in Marina.

It’s a “very torquey motor” in Bowles’ words, to turn the props slowly enough, with a big chord, so efficient at low rpm; plus a drooped tip lowers the vortex a blade length; plus five blades, with their angle of incidence not common to each other. The arrangement is such that it doesn’t stand up a resonance—so no sine wave and its resulting noise footprint.

As the teams look at every geographic location as a special case—procedures are always local—they assess the existing infrastructure—airports, helipads—and, over time, the development of a vertiport: a 50-foot piece of concrete with electric charging and noise limits.

Joby already can make use of the roughly 5,080 GA airports in the U.S. but adds 5,000 more heliports. That’s a lot of opportunity already in place if we can keep those landing sites open. With most people living an average 16-minute drive from an airport, that future lies in clear sight.


These columns first appeared in the March 2024/Issue 946 of FLYING’s print edition.

The post A First Look at Joby’s eVTOL Future appeared first on FLYING Magazine.

]]>
In Depth with JoeBen Bevirt Illuminates the Joby Vision https://www.flyingmag.com/in-depth-with-joeben-bevirt-illuminates-the-joby-vision/ Tue, 16 Jan 2024 12:12:40 +0000 https://www.flyingmag.com/?p=192952 In the quest to free vertical flight, the engineer makes good on a childhood dream.

The post In Depth with JoeBen Bevirt Illuminates the Joby Vision appeared first on FLYING Magazine.

]]>
In the folds of the Santa Cruz Mountains in California, a boy grew up dreaming of a different kind of flight—one that wouldn’t be constrained by the traditional means of lifting off and landing in challenging places, just like the remote enclave his parents called home in the 1970s and ’80s. Yes, helicopters would, in theory, take him where he wanted to go, but the noise produced by a typical combustion engine and rotor blades shattered the quiet he wished to preserve.

This dream provoked a vision for JoeBen Bevirt—one he has singularly pursued ever since.

After finding his natural engineering mind on a track at the University of California-Davis, and a graduate degree in mechanical engineering at Stanford University, Bevirt founded a series of successful companies in the tech sector. He started Velocity11 in 1999, developing robotic systems for laboratory work. The first iterations of “Joby”—Joby Inc., which produced the Gorillapod, and Joby Energy, focused on aerial wind turbines—came into being prior to the main event, Joby Aviation, which he founded in 2009.

Joby Aviation launched to coalesce Bevirt’s vision of an all-electric vertical takeoff and landing (VTOL) aircraft and the transportation system to support and deploy it. Now, as the company surpasses 1,400 employees and celebrates the reveal of its conforming production prototype, the vision sits on the cusp of being fully realized. FLYING talked with Bevirt to illuminate the source of that vision and where it will take Joby next.

Bevirt showed an early predisposition to engineering. [Courtesy of JoeBen Bevirt]

FLYING Magazine (FM): So what was it that set off that spark for you when you were that young boy?

JoeBen Bevirt: (JB): I was born and raised far from civilization in a place called Last Chance. Our house was at the edge of a beautiful meadow with fruit trees and a garden nestled among the redwoods overlooking the Pacific Ocean. In the morning I would get a ride to school with one of my parents on their way to work. In the af- ternoon I would either go to a friend’s house and wait or I would take the city bus to the transit station and then take another bus up the coast. I would get off at the bot- tom of Swanton Road and then walk a mile up to Last Chance and then the 4 miles back from Last Chance to my home. It gave me a lot of time to dream about bet- ter ways [of] getting from [point] A to B. I loved where I lived, and I loved my school, but I wanted to be able to expediently get between them.

I imagined an aircraft could take off and land in the meadow. But it was also pretty quiet, and peaceful, and the idea of a really loud aircraft didn’t appeal to me. For me, it was a question of “how do I build an aircraft that is suitable for this serene, beautiful place but that I can take off and land vertically?”

FM: How did you first try to solve that problem?

JB: I inherited my uncle’s collection of model airplane parts including a whole bunch of little model engines—and they were horrifically loud. So, I thought, this is not the answer. They were really fun but really loud. [laughs] Then I started playing with remote-control car motors, and at this point in time, they were these little brushed motors and NiCad batteries, and I mounted props to them, and built many crazy contraptions. This was one of my first experiences with iterative engineering even before I knew what engineering was.

FM: You began working with electric motors, but it took time for them to reach a usable capacity, right?

JB: In 1993 when I was in college, my proficiency with engineering had improved, and I had the opportunity to work for a company doing pioneering work on vertical take off and landing aircraft. Unfortunately, they were horrifically loud. I became convinced that electric propulsion was the critical unlock to make VTOL aircraft part of daily life. NiCad batteries had gotten to 40 or 50 watt hours per kilogram, and there were rumors that the lithium-ion battery was going to move from the lab into production and that Sony was getting close with a cell specific energy of 70 watt hours per kilogram. But even 70 watt hours per kilogram didn’t feel sufficient for a useful endurance.

There were researchers at the DOE [Department of Energy] projecting that lithium ion had the potential to get us to 200 watt hours a kilogram in 20 years. Batteries had been improving by 6 percent a year since the late 1800s, and I figured that it was going to stay on that ramp. But I was 19 years old, and I was thinking, 6 percent a year—it’s going to take 20 years to get to a useful specific energy— that felt like an eternity, and so I put my dream of electric

flight on hold. At Stanford in 1998, I met a guy named JB Straubel who was fixated on building an electric car, and over the years I had the opportunity to experience a few exhilarating test drives in his prototypes. This gave me a front-row seat to the progress being made on batteries. By 2008 I had sourced batteries with a specific energy of 170 watt hours per kilogram and a specific power of more than 1 kilowatt per kilogram, which I believed was sufficient to build a vertical takeoff and landing aircraft with 100 miles of range. After a bit of design work and analysis, I founded Joby to bring electric vertical takeoff and landing aircraft to life. Today we are certifying our aircraft with cells that are more than 280 watt hours per kilogram. And we’ve moved from the idea of making something for an enthusiast to something that could be a new mode of transportation.

FM: So, with that early introduction into electrical and mechanical engineering, it was pretty clear that was your passion. Were there any other directions you thought about going?

JB: No. I loved building things and creating things. But there were no engineers in my family. I remember in seventh grade, my math teacher said, “You’re gonna be an engineer,” and I said, “I don’t wanna drive trains!” and he’s like “No, no, no, no, no…my son’s studying to be an engineer, and I think that you’re going to be an engineer.” And he explained what an engineer was, and I’m like, “That’s it!” So I had my calling since I was really little, but I first had somebody put a name to it in seventh grade. From that point, I was on cruise control, so focused. In high school, I was also really into cycling, so I designed and built one of the world’s first full-suspension mountain bikes, and it was really fun to watch the cycling industry emerge. It was funny back then because all my friends would make fun of me for putting a suspension on a bike, and I said, “But it’s so much better!” And they thought I was weak, like your legs are supposed to be the shock ab- sorbers. But it’s fun to have watched that industry evolve.

Early engineering projects included work on high-end cycling equipment. [Courtesy of JoeBen Bevirt]

FM: So, in graduate school, were there mentors or fellow students that you worked with on the vision?

JB: Right at the beginning of my sophomore year, I went to the dean of the engineering school and said, “You’re teaching computer-aided design wrong. And you’re do- ing a massive disservice to the students, and we have to fix it.” And he said, “‘OK, that’s amusing.” And so he picks up the phone, “Paul, I’ve got somebody for you. Can I send him over?” Click. I ride over to the research park, and I knock on the door, and it says Moller International. There was something that went off in my head, but it didn’t really click. And I walked inside, and there was a picture of this vertical takeoff and landing aircraft, and I’m like— wow! And so it was serendipity.

So I went and interned for Paul [Moller] for a quarter, and then I convinced him that I should create an internship program. I had four interns for the next quarter. And then I convinced him that we should expand and have like 12 interns, and this was with a team of like 40 engineers at the time—awesome engineers—and all of a sudden there were 12 interns and the engineers were looking at themselves wondering, “What just happened?” It was my first experience of leading a larger team. Moller had built a whole bunch of breakthrough vertical takeoff and landing aircraft through the ’70s and ’80s. It was cool for me to be able to see the integration of composites and mechanical engineering and electrical engineering and software engineering—and what was needed to…make vertical takeoff and landing aircraft possible.

FM: You’ve built a company centered around a vertically integrated enterprise. You’re not just making the part— you’re figuring out is this the right composition of this base material. Why is having that depth of control over the process critical to the transformative thing that you’re trying to do?

JB: I think to engineer and build the most performant things—whether that’s at the aircraft level or whether that’s at the system level or the component level, or the individual part—you really need to understand all the nuance[s]. And whether that’s in the material properties or that’s in the way that the pieces integrate together, [or] whether [it’s] the way that the systems communicate with one another. I think that one of the pieces that I’m so excited about and passionate about is the technology that runs both the electronics and the software that run each of the components and the controls, whether it’s the flight computers or the actuators or the air data systems or the navigation systems. All of these different systems across the aircraft share a common hardware and software stack. It gives us the ability to innovate and to move aviation to the next level from a technological standpoint. The rate at which we’re able to collect data from each of those devices, the richness of the data, the temperatures and the currents and the voltages and the acceleration levels…we know so much about everything that’s going on across the aircraft…which is valuable from a product maintenance standpoint…and [provides] the ability to really understand the aircraft at a substantially more sophisticated level than we’ve ever been able to do before.

It also enables us to build a fly-by-wire control system [that] we hope will substantially improve safety by reducing pilot workload and allowing the pilot to focus on things that pilots are really good at doing. Our aircraft—you could just design it in a way that had more pilot workload than traditional aircraft. But we’ve decided to make it substantially easier and safer to fly.

Joby Aviation had been flying a full-scale prototype (above) for a couple of years before unveiling its conforming production prototype in June. [Credit: Stephen Yeates]

FM: You’ve built a transparent culture. Is this something that you’ve driven into your organization purposefully?

JB: I think because we grew the organization organically, with that as the ethos from the beginning, I think that helps you see it [and know it’s something] that you always have to continue to nurture and focus on and foster, but it is something we cherish.

FM: Were there any challenges with getting the FAA to ac- cept and get through the first set of papers, putting it all into motion?

JB: We started working informally with the FAA back in 2015. We had conversations well back before that, but by that point in time, there was momentum building. We started the Electric Propulsion & Innovation Committee [EPIC] at GAMA. We then began a formal certification in 2018. We’d been flying our full-scale prototype for a [little more than a] year at that point, and the level of engagement and forward lean from the FAA was increasing steadily. We’ve continued to foster a really constructive relationship with everyone that we work with at the FAA. The degree with which the FAA has leaned into this industry is really fantastic. I mean, they see it as you see it, that it has the potential to transform flight both in the degree of relevancy that it has to large por- tions of the population on a daily basis but also to make it safer. And… more accessible, sustainable. So there’s a lot of value in each of these different dimensions.

FM: Can you pick a specific challenge so far that you’ve solved that has curved things up?

JB: I think that the one right now that I’m super excited about is getting this first aircraft off our pilot manufacturing line. And that it is just so exciting to have used all of our quality processes and have built all the procedures to not just build the experimental aircraft but to have the pieces in place to begin building conforming aircraft. So it’s a monumental achievement from the team. It took a spectacular amount of work, and I’m just so proud. 

Bevirt grew up in the Santa Cruz Mountains in California, which inspired his desire for short-distance, low-impact vertical transport. [Courtesy of JoeBen Bevirt]

Quick 6

Is there anyone living or dead that you would most like to fly with?

Kelly Johnson

If you could fly any aircraft that you haven’t flown yet, what would that be?

The F-22

What is your favorite airport that you’ve flown into?

Orcas Island Airport (KORS) in Washington

What do you believe has been the biggest innovation breakthrough or event in aviation?

Frank Whittle’s invention of the turbine

What is one important life lesson from being a pilot and inventor?

Dare to look over the horizon.

When not working towards the first TCed eVTOL aircraft, what would you rather be doing?

Catching up on the latest from our advanced research team

This profile first appeared in the August 2023/Issue 940 of FLYING’s print edition.

The post In Depth with JoeBen Bevirt Illuminates the Joby Vision appeared first on FLYING Magazine.

]]>
Joby Performs First eVTOL Test Flights in New York https://www.flyingmag.com/joby-performs-first-evtol-test-flights-in-new-york/ https://www.flyingmag.com/joby-performs-first-evtol-test-flights-in-new-york/#comments Mon, 13 Nov 2023 16:02:15 +0000 https://www.flyingmag.com/?p=187776 Joby Aviation took a step toward commercial eVTOL service with demonstration flights from New York’s Downtown Heliport.

The post Joby Performs First eVTOL Test Flights in New York appeared first on FLYING Magazine.

]]>
Joby Aviation Inc. performed a demonstration flight in New York City on Sunday, marking the first time an electric vertical takeoff and landing (eVTOL) air taxi has flown in the city and the first flight for the company’s aircraft in an urban setting.

The Joby eVTOL flew from the well-known Downtown Heliport (KJRB) in Manhattan, where New York Mayor Eric Adams on Monday announced the city’s plans to electrify the heliport. The move would be a major step toward development of an eVTOL transport network in New York, a city known for a range of mobility challenges.

“By electrifying one of the most famous heliports in the world, New York is demonstrating global leadership in the adoption of electric air travel. We’re grateful for the support of the city, and we’re honored to be working with visionary partners like Delta Air Lines to bring our air taxi service to this market,” said JoeBen Bevirt, Joby’s founder and CEO. “We plan to make quiet, emissions-free flight an affordable, everyday reality for New Yorkers, while significantly reducing the impact of helicopter noise.”

Joby said the demonstration flight followed several days of preparation flights at the HHI Heliport (65NJ) in Kearny, New Jersey. The company previously announced that it expects New York to be one of its early launch markets after receiving certification for its piloted, four-passenger eVTOL aircraft.

Joby said its aircraft can fly up to 100 sm on a charge and is optimized for rapid, back-to-back flights. It could complete nearly all typical trips across the five New York boroughs. While the notoriously difficult journey from Manhattan to John F. Kennedy International Airport (KJFK) can take more than an hour by car, Joby expects to make the trip in seven minutes by air.

“The Adams administration has been a leader in driving technology innovation and economic growth while simultaneously improving quality of life,” said Andrew Kimball, president and CEO of the New York City Economic Development Corporation (EDC). “EDC’s new strategy for the Downtown Manhattan Heliport reflects these priorities while making it an industry leader in the embrace of eVTOLS—a quieter and greener helicopter alternative.”

Joby said it is working with partner Delta Air Lines, the Port Authority of New York and New Jersey and the New York City EDC as they plan for eVTOL operations. Efforts include development of infrastructure at KJFK and LaGuardia Airport (KLGA). Delta said these plans will build on other recent improvements it has made at its New York hubs.

“Delivering exceptional experiences for our customers is why Delta has invested over $7 billion in New York City, especially at our LaGuardia and JFK hubs,” said Gail Grimmett, senior vice president of sustainability performance and strategic partnerships at Delta. “[Monday’s] announcement demonstrates the great progress that’s been made toward launching clean, quiet, and convenient air taxi services for Delta customers traveling to and from New York, and is a testament to our innovative partners at Joby and the support of Mayor Eric Adams in advancing new and sustainable technologies.”

Joby said it has flown more than 30,000 miles with its full-scale prototype eVTOL aircraft since 2017. The company’s pilot production plant in Marina, California,  recently completed its first aircraft. Joby also delivered an electric air taxi to the U.S. Air Force for testing. Joby expects to begin commercial passenger service in 2025.

The post Joby Performs First eVTOL Test Flights in New York appeared first on FLYING Magazine.

]]>
https://www.flyingmag.com/joby-performs-first-evtol-test-flights-in-new-york/feed/ 1
Joby Rolls Out First Aircraft from Production Line https://www.flyingmag.com/joby-rolls-out-first-aircraft-from-production-line/ https://www.flyingmag.com/joby-rolls-out-first-aircraft-from-production-line/#comments Wed, 28 Jun 2023 14:25:46 +0000 https://www.flyingmag.com/?p=174646 The California-based manufacturer also names Toyota executive to its board of directors.

The post Joby Rolls Out First Aircraft from Production Line appeared first on FLYING Magazine.

]]>
The building blocks to achieve production must come together concurrently with type certification, if an aircraft manufacturer has any hope of launching a new product in a timely fashion. To this end, Joby Aviation has been formulating its processes along with the tooling, hardware, software, and teams required to achieve the goal of eVTOL success.

On Wednesday, Joby revealed a major milestone in the road to a type certificated production aircraft with the rollout of its first model built on the company’s Pilot Production Facility’s final assembly line in Marina, California. Derived from released engineering drawings under the OEM’s purpose-built quality management system, the production prototype makes for a “major step” on the road to aircraft manufacturing at the scale that Joby projects in both its short- and long-term plans.

In the Wednesday event with longtime partner—and largest investor—Toyota, and a visit from California Gov. Gavin Newsom, Joby displayed the latest version of the eVTOL. It marks a first in the industry, too, to have a production prototype out the door, complete with the special airworthiness certificate to start flying it.

“Today’s achievement is the culmination of years of investment in our processes and technology and it marks a major step on our journey to scaled production,” said JoeBen Bevirt, founder and CEO of Joby. “We’re proud to have launched production in our home state of California. I’m incredibly grateful to the Joby team for their commitment to ensuring Joby remains the clear leader in this new sector and to Toyota for sharing their knowledge and experience with us over many years. Their support has been indispensable in helping us reach this point.” 

Joby Founder and CEO JoeBen Bevirt and California Gov. Gavin Newsome. [Courtesy: Joby Aviation]

Newsom said: “California is proud to be home to some of the world’s most innovative companies. Joby is changing the game when it comes to the next frontier of flight: zero emission aviation. Our world-leading climate action relies on the technological advances and pioneering spirit of the private sector. Creating jobs and cutting pollution—that’s the California way.”

Full Scale to Full Scale

Joby began flying a subscale demonstrator in 2014—and it has been flying full-scale prototypes for six years now. In fact, flights of the preproduction prototype have become a regular sight at the Marina Municipal Airport (KOAR), where the last stages of assembly take place.

After an initial flight test program, Joby will deliver the aircraft to Edwards Air Force Base, where it will fulfill part of the company’s $131 million contract with the U.S. Air Force. If this beats other eVTOL manufacturers to the punch, it will mark the first customer delivery in the industry.

Toyota Motor CEO Joins the Board 

Toyota has been an intimate partner to Joby, assisting with the design of the production line and facility, with Toyota personnel embedded in Joby teams during the development and production of the prototype aircraft. Tetsuo “Ted” Ogawa, president and CEO of Toyota Motor North America Inc., joined more than 1,000 guests and team members at Joby’s Marina facility to celebrate the launch of production. 

Ogawa will also join Joby’s board of directors on Saturday. “We congratulate Joby on reaching this milestone and look forward to working ever more closely as Joby prepares to scale production and start operations,” he said. 

Joby Attracts $100 Million Investment

On Thursday, the company announced a deepening of its partnership with South Korea telecommunications giant SK Telecom with its $100 million equity investment. The agreement was executed on June 27, and comes as part of Joby’s planned participation in the country’s S-UAM Grand Challenge alongside SKT. The challenge will help South Korea develop its nascent aerial ridesharing program.

Range, Speed

Joby also unveiled more data on its production conforming prototype, giving range and speed figures, along with details on the battery and power systems as notches this progress with the final configuration. With dual-wound motors and isolated battery packs, the propulsion system and its energy storage system offer multiple levels of redundancy and no single point of failure.

The model’s peak power delivers “nearly twice the power of the Tesla Model S Plaid, despite being lighter,” according to the company, and its peak torque is roughly commensurate with that of a Ford F-350 heavy duty truck.

Pouch cells sourced from the automotive supply chain offer the right cell-specific energy needed to deliver on “key metrics,” said Joby in a presentation with the event. And at the pack level, the specific energy provided also conforms to the standard required—and meets the FAA’s safety strictures while still giving “industry-leading performance.”

Joby expects the aircraft to recharge quickly, in “the time it takes to deplane and load passengers on more than 95 percent of the trips taken today in our target markets.”


Joby’s New Prototype, By the Numbers

  • Payload: 1,000 pounds
  • Capacity: 1 pilot, 4 passengers
  • Range: up to 100 miles (87 nm)
  • Cruise Speed: up to 200 mph (174 knots)
  • Noise Footprint: 45 dBA in cruise
  • Peak Power: 236 kW
  • Weight of Dual-Wound Motor Plus Inverter: 28 kg
  • Peak Torque: 1,800 N m
  • Continuous Torque: 1,380 N m
  • Cell-Level Specific Energy: 288 Wh/kg
  • Flight Cycles: 10,000 plus
  • Pack-Level Specific Energy: 235 Wh/kg

The post Joby Rolls Out First Aircraft from Production Line appeared first on FLYING Magazine.

]]>
https://www.flyingmag.com/joby-rolls-out-first-aircraft-from-production-line/feed/ 5