Atlas V Archives - FLYING Magazine https://cms.flyingmag.com/tag/atlas-v/ The world's most widely read aviation magazine Fri, 07 Jun 2024 17:40:44 +0000 en-US hourly 1 https://wordpress.org/?v=6.4.4 Boeing’s Spacecraft Lifts Off With Astronauts https://www.flyingmag.com/news/godspeed-starliner-boeings-spacecraft-finally-lifts-off-with-astronauts/ Wed, 05 Jun 2024 18:09:17 +0000 /?p=209001 Starliner’s crew flight test (CFT) is the first time the capsule has carried humans and is intended to be its final mission before NASA moves to certify it for service.

The post Boeing’s Spacecraft Lifts Off With Astronauts appeared first on FLYING Magazine.

]]>
After nearly a month of setbacks due to a faulty valve, a helium leak, and other obstacles, Boeing’s Starliner is headed for the cosmos.

On Wednesday morning, the autonomous, semireusable space capsule—intended for 10 service missions to the International Space Station (ISS) under a multibillion contract between the aerospace manufacturer and NASA—finally lifted off with humans for the first time.

The long-delayed mission, called the Boeing Starliner Crew Flight Test (CFT), will take NASA astronauts Butch Wilmore and Suni Williams to the orbital laboratory, where they will conduct an array of tests and evaluations of the spacecraft, its systems, and equipment.

The CFT is expected to be Starliner’s final flight test, demonstrating its capabilities with astronauts on board before NASA moves to certify it for Commercial Crew rotation missions to the ISS. The first of these, Starliner-1, could take place as early as next year.

An initial CFT launch attempt on May 6 was scrubbed, and the mission was postponed several times before finally taking flight. But Wilmore and Williams are now well on their way to the space station, where they are expected to dock Thursday at 12:15 p.m. EDT.

We Have Liftoff

Starliner lifted off from the pad at Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on Wednesday at 10:52 a.m. EDT as teams had planned.

Carrying the capsule into orbit was United Launch Alliance’s (ULA) Atlas V rocket, which is making its 100th flight. Atlas V, when stacked together with Starliner, stands over 170 feet tall and generated some 1.6 million pounds of thrust at liftoff.

The liftoff represented the first time humans have hitched a ride on either Starliner or Atlas V. Williams became the first woman to fly on the maiden voyage of a crewed spacecraft.

After achieving Max Q—the moment the rocket faces the greatest amount of pressure as it climbs through the atmosphere—Starliner successfully separated from Atlas V at suborbit, just under 15 minutes into the mission. From this point on, the astronauts will be on their own.

About half an hour into the mission, Starliner executed a successful insertion burn to place it in stable orbit, from which the capsule will embark on an approximately 24-hour journey to the ISS. The spacecraft will dock with the orbital laboratory’s Harmony module Thursday afternoon, and Williams and Wilmore will disembark to join the crew of NASA’s Expedition 71 for a weeklong stay.

Setting the Stage

Throughout the CFT, the astronauts will work to prepare Starliner for certification.

The performance of equipment such as suits and seats was assessed during prelaunch and ascent. As Starliner rendezvous with the space station, the crew will conduct further testing of life support equipment, manual and automated navigation systems, and thruster performance in the scenario of a manual abort. While capable of flying on its own, the capsule can be commanded manually, and crews have failsafes at their disposal at different points in the flight path.

After assessing Starliner’s autonomous docking capabilities and the opening and closing of its hatch, the astronauts will configure the spacecraft for its stay and move emergency equipment into the ISS. Once they are settled, teams will perform checks of displays, cargo systems, and the vehicle itself.

Williams and Wilmore will also try to prove that the capsule could serve as a “safe haven” in the event of depressurization, fire, or collision with debris impacting the orbital laboratory.

On their return trip, the astronauts will briefly test out Starliner’s manual piloting capabilities. As it approaches Earth’s atmosphere, the capsule will slow from its orbital velocity of 17,500 mph and touch down in one of four locations in the Western U.S., using a combination of parachutes and airbags.

A Calculated Risk

If all goes according to plan, Starliner could launch on its first Commercial Crew rotation mission for NASA in the first half of next year. However, the space agency, Boeing, and ULA are taking a calculated risk with the mission.

A helium leak traced to one of the 28 reaction control system thrusters on Starliner’s service module—which helps maneuver the capsule while in orbit—is responsible for a few of the spacecraft’s recent setbacks. NASA describes the leak as small and stable.

But in a scenario Steve Stich, who manages the Commercial Crew program, described as “a pretty diabolical case, where you would lose two helium manifolds in two separate [thrusters]” that are next to one another, Starliner could be unable to perform a deorbit burn. That’s the maneuver that allows it to slow down from orbital speeds as it reenters the atmosphere.

NASA estimated the likelihood of this occurring at 0.77 percent. As a contingency, it and Boeing developed a modified deorbit burn procedure which they say has been tested in a simulator by Williams and Wilmore.

What It Means

There’s a lot riding on the Starliner CFT’s success.

For Boeing, which rakes in billions every quarter, the more important impact may be reputational rather than financial. The company has come under fire in recent months for its internal safety processes, and successfully flying two humans to the ISS and back could help ease the pressure.

For NASA, Starliner may be instrumental in achieving the agency’s goals.

To date, all eight Commercial Crew rotation missions have been flown by SpaceX’s Crew Dragon, which like Starliner is a reusable capsule for up to seven passengers. SpaceX signed its own multibillion-dollar contract with the space agency at the same time as Boeing and has since extended it multiple times, without failing to complete a mission.

But NASA wants an alternative to Dragon in the case of a contingency, such as the one that stranded astronaut Frank Rubio on the ISS for nearly a year—and helped him set a U.S. spaceflight record in the process. The space agency made sure to commemorate Rubio’s achievement, but it wants to avoid a similar situation recurring. By keeping two reusable spacecraft in its fleet, it could have one ready to retrieve a crew in case the other fails.

Should Starliner enter NASA’s Commercial Crew rotation, it will alternate six-month missions to the ISS with Dragon.

Like this story? We think you’ll also like the Future of FLYING newsletter sent every Thursday afternoon. Sign up now.

The post Boeing’s Spacecraft Lifts Off With Astronauts appeared first on FLYING Magazine.

]]>
New Starliner Launch Target Identified After Setback https://www.flyingmag.com/modern/new-starline-launch-target-identified-after-setback/ Mon, 03 Jun 2024 18:38:33 +0000 /?p=208773 The semireusable space capsule has a new launch target after yet another issue postponed its first crewed flight to Wednesday at the earliest.

The post New Starliner Launch Target Identified After Setback appeared first on FLYING Magazine.

]]>
The inaugural crewed flight test (CFT) of Boeing’s Starliner capsule—a reusable vessel to the International Space Station (ISS) under a multibillion-dollar contract with NASA for six missions—was scrubbed over the weekend after a new problem arose during the launch countdown.

The mission, which has faced a series of setbacks since an initial launch attempt was scrubbed on May 6, is now targeted for 10:52 a.m. EDT on Wednesday, with a backup launch window available Thursday.

The Starliner CFT is intended to be the spacecraft’s final test flight before NASA moves to certify it for service missions to the ISS, the first of which could take place next year. To date, all eight Commercial Crew rotation missions to the orbital laboratory have been flown by SpaceX’s Crew Dragon. 

The company signed its own multibillion-dollar contract with the space agency at the same time as Boeing but has already cemented itself as an invaluable partner. The same cannot be said for the aerospace giant, which has flown Starliner to the ISS just once.

CFT launch attempts have been delayed or scrubbed due to a litany of issues. First, it was a faulty pressure regulation valve on United Launch Alliance’s (ULA) Atlas V launch vehicle, which will carry Starliner into orbit. Then, crews discovered a small helium leak on Starliner itself, involving one of the 28 reaction control system thrusters on its service module. These small engines use helium to make minor maneuvers and keep Starliner in orbit.

NASA and Boeing have since described the leak as stable but have opted not to repair it, which would require Starliner to be unstacked from Atlas V and could take months. However, in investigating the root cause of the leak, crews discovered what the space agency described as a “design vulnerability” in the capsule’s propulsion system.

In a scenario NASA estimates has a likelihood of about 0.77 percent, the original leak could combine with an adjacent leak to prevent Starliner from performing a deorbit burn. That’s the maneuver that returns a spacecraft to Earth’s atmosphere following its mission.

All of this work identifying and assessing risk pushed the CFT back to Saturday. But yet another problem forced a cancellation of the launch just a few minutes before takeoff—and made a second go-around on Sunday infeasible.

According to the Starliner team, the issue is again on ULA’s side of things.

During the countdown, ground support equipment on the pad at Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida experienced issues, which crews traced to a power supply unit on one of three chassis on Atlas V’s Centaur upper stage. The power supply unit indirectly powers Centaur’s topping valves during the launch sequence, and all three chassis must be running in order for the countdown to be completed.

According to Tory Bruno, CEO of ULA, the chassis with the faulty power unit was quickly replaced. The new equipment has been retested and was functioning normally as of Sunday. NASA and Boeing added that they did not observe any physical damage to Starliner or Atlas V, and crews will perform a “full failure analysis” to determine what went wrong.

NASA astronauts Butch Wilmore and Suni Williams, Starliner’s first human passengers, remain in quarantine at Kennedy Space Center. If all goes according to plan, Wilmore and Williams will dock with the ISS later this week. There, they will spend about one week performing tests of Starliner’s systems as NASA prepares for the program’s next step: certification.

After that, Starliner would begin alternating six-month Commercial Crew rotation missions with SpaceX’s Dragon.

Like this story? We think you’ll also like the Future of FLYING newsletter sent every Thursday afternoon. Sign up now.

The post New Starliner Launch Target Identified After Setback appeared first on FLYING Magazine.

]]>
Boeing, NASA Take Calculated Risk with Upcoming Starliner Launch https://www.flyingmag.com/modern/boeing-nasa-take-calculated-risk-with-upcoming-starliner-launch/ Fri, 31 May 2024 19:20:58 +0000 /?p=208694 Starliner crews are contending with what NASA describes as a 'design vulnerability' that could prevent the spacecraft from performing a deorbit burn.

The post Boeing, NASA Take Calculated Risk with Upcoming Starliner Launch appeared first on FLYING Magazine.

]]>
What NASA describes as a “design vulnerability” in Boeing’s Starliner capsule—a semireusable vessel to low-Earth orbit that the agency is considering for Commercial Crew rotation missions to the International Space Station (ISS)—won’t prevent teams from attempting to launch the spacecraft with humans onboard for the first time this weekend.

NASA and Boeing on Wednesday announced that the Starliner Crewed Flight Test (CFT), intended to be the spacecraft’s final dress rehearsal before the agency certifies it for service missions, is a “go” to proceed for 12:25 p.m. EDT on Saturday, June 1.

However, Starliner engineers during a press conference last week said that a design flaw with the spacecraft’s propulsion system gives the capsule a 0.77 percent chance of being unable to perform a deorbit burn after it returns from the ISS. A deorbit burn, in which the vehicle reverses direction and fires its orbital maneuvering engines to slow itself, is used to maneuver a spacecraft back into Earth’s atmosphere.

NASA, Boeing, and launch provider United Launch Alliance, a joint venture between Boeing and Lockheed Martin, are taking a calculated risk with the launch attempt following years of delays to the Starliner program. The setbacks have resulted from a combination of issues involving the spacecraft’s software, propulsion system, and parachutes.

Boeing and rival SpaceX each have multibillion-dollar contracts with the space agency to provide crew rotation services. But all eight missions to the ISS to date have been flown using SpaceX’s Crew Dragon, which like Starliner is a reusable capsule designed to accommodate up to seven passengers.

Starliner in 2019 and 2022 attempted two uncrewed test flights to the ISS, the first aborted and the second successful.

The capsule’s first crewed mission has been delayed a number of times since an initial launch attempt scheduled for May 6 was scrubbed due to an issue with ULA’s Atlas V launch vehicle. Following that setback, engineers discovered a small helium leak on the Starliner capsule itself, tracing it to one of 28 reaction control system thrusters on the spacecraft’s service module.

“This is a high-pressure system, and helium is a very small, tiny molecule, and it tends to leak,” said Steve Stich, manager of NASA’s Commercial Crew program, last week. “This particular leak, I don’t think it implicates the design of the seal or the flange. It’s just maybe a defective part.”

Rather than replace the faulty valve, which would involve removing Starliner from the Atlas V rocket and could take several months, crews decided to try and better understand the flaw.

According to Stich, Starliner could actually weather a complete rupture in the valve’s seal, even if additional helium leaks spring up elsewhere.

“We could handle this particular leak if that leak rate were to grow even up to 100 times,” he said.

The leak is now described as stable, and Stich noted that SpaceX’s Dragon has also encountered leaks, which did not impact operations. But in the course of investigating the issue, teams uncovered yet another problem.

“We found a design vulnerability…in the [propulsion] system as we analyzed this particular helium leak, where for certain failure cases that are very remote, we didn’t have the capability to execute the deorbit burn with redundancy,” said Stich.

In what Stich described as “a pretty diabolical case where you would lose two helium manifolds in two separate doghouses, and then they have to be next to each other”—referring to the aforementioned 0.77 percent figure—Starliner could be unable to perform a deorbit burn. Engineers said they have come up with a contingency plan that has already been tested by NASA astronauts Suni Williams and Butch Wilmore in a Starliner simulator.

“We have multiple redundancies in our system,” Mark Nappi, vice president of Boeing and program manager for Starliner, said last week. “We have a case here that’s extremely remote that we missed. And if there are more out there, they’re going to be in that same category of extremely remote.”

Though the issue hasn’t entirely gone away, Starliner teams appear committed to a launch on Saturday.

NASA, Boeing, and ULA on Wednesday completed a Delta-Agency Flight Test Readiness Review, determining that all Starliner systems, facilities, and teams are ready for launch. On Thursday, crews rolled Atlas V and Starliner back to the pad at Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida, further signaling their intent to move forward with the attempt.

NASA will provide live coverage of the mission on its website, app, and YouTube channel. If all goes according to plan, Starliner, carrying Wilmore and Williams, will dock to the ISS’s Harmony module Sunday afternoon. The astronauts would then spend about one week on the orbital laboratory, where they will test the capsule’s systems in order to advance the certification process.

NASA hopes to get Starliner into its Commercial Crew rotation with the Starliner-1 service mission, scheduled for no earlier than 2025. After that, it would alternate six-month missions to the ISS with SpaceX’s Dragon.

U.S. Space Force meteorologists on Friday said there is a 90 percent chance that weather conditions will meet the criteria for a safe launch. Should the attempt be scrubbed again, backup launch windows are scheduled for Sunday, June 2, Wednesday, June 5, and Thursday, June 6.

Like this story? We think you’ll also like the Future of FLYING newsletter sent every Thursday afternoon. Sign up now.

The post Boeing, NASA Take Calculated Risk with Upcoming Starliner Launch appeared first on FLYING Magazine.

]]>
Boeing, NASA Delay Starliner Again Due to New Issue https://www.flyingmag.com/boeing-nasa-now-targeting-may-21-for-starliner-launch/ Wed, 15 May 2024 17:35:12 +0000 https://www.flyingmag.com/?p=202916 The spacecraft’s inaugural crewed flight test will now occur no earlier than 4:43 p.m. EDT on Tuesday after teams discover a new issue.

The post Boeing, NASA Delay Starliner Again Due to New Issue appeared first on FLYING Magazine.

]]>
NASA, Boeing, and United Launch Alliance (ULA), a joint venture between Boeing and Lockheed Martin, are now targeting no earlier than 4:43 p.m. EDT on Tuesday for the next launch attempt of the crewed flight test (CFT) of Starliner: Boeing’s semireusable vessel to the International Space Station (ISS).

The approximately weeklong mission—which will take NASA astronauts Butch Wilmore and Suni Williams to the ISS and back—is intended to be Starliner’s final test flight before NASA certifies it for Commercial Crew rotation missions to the orbital laboratory. It would be the first crewed launch on ULA’s Atlas V rocket, which will send the spacecraft into orbit, and the first on the Atlas family of rockets in more than half a century.

An initial Starliner CFT launch attempt, scheduled for May 6, was scrubbed hours before takeoff due to an oscillating pressure regulation valve on the Atlas V’s upper stage. Boeing and NASA then pushed back the mission to May 10, later revising their timeline to Friday after successfully replacing the faulty valve.

Now, a new issue—involving the Starship capsule itself, rather than Atlas V—is holding up things.

NASA and Boeing on Tuesday said Starliner crews discovered a small helium leak on the spacecraft’s service module “traced to a flange on a single reaction control system thruster.”

The service module, which unlike Starliner’s crew module is expendable, is designed to power and maneuver the autonomous spacecraft. It is equipped with 28 reaction control system engines, designed by Boeing supplier Aerojet Rocketdyne, that generate 100 pounds of thrust each and stabilize the capsule in orbit. Helium allows the thrusters to fire and is neither toxic nor combustible.

Starliner teams are working to address the issue and conduct additional testing, resulting in the new target launch date of Tuesday.

“As a part of the testing, Boeing will bring the propulsion system up to flight pressurization just as it does prior to launch, and then allow the helium system to vent naturally to validate existing data and strengthen flight rationale,” the company said.

Boeing and NASA added that no further issues have arisen since the scrubbed launch on May 6.

Starliner successfully reached the ISS for the first and only time during an uncrewed test flight in 2022. But since Boeing unveiled the concept for the spacecraft in 2010, the program has been bogged down by delays. The CFT has been no exception.

NASA intends for Starliner to serve as a redundant alternative to SpaceX’s Crew Dragon capsule—which, like Starliner, was designed to ferry astronauts to low-Earth orbit destinations—in the case of a contingency, such as the one that stranded astronaut Frank Rubio in space for six months (and helped Rubio achieve a U.S. spaceflight record in the process). Crew Dragon has flown all eight Commercial Crew missions to date under a contract with the space agency agreed upon in 2014, which has since been extended.

NASA and Boeing have a similar contract, worth $4.2 billion, for six missions, the first of which could fly early next year if all goes according to plan Tuesday.

Like this story? We think you’ll also like the Future of FLYING newsletter sent every Thursday afternoon. Sign up now.

The post Boeing, NASA Delay Starliner Again Due to New Issue appeared first on FLYING Magazine.

]]>
ULA Prepares for Delta IV Heavy’s Final Mission https://www.flyingmag.com/ula-prepares-for-delta-iv-heavys-final-mission/ Thu, 28 Mar 2024 19:34:55 +0000 https://www.flyingmag.com/?p=199379 United Launch Alliance’s Delta IV Heavy space launch vehicle will carry a classified payload from the U.S. National Reconnaissance Office.

The post ULA Prepares for Delta IV Heavy’s Final Mission appeared first on FLYING Magazine.

]]>
One of the most prolific families of space launch vehicles in U.S. history is preparing for its swan song.

United Launch Alliance (ULA) on Friday will attempt the 16th and final launch of its Delta IV Heavy rocket, one of the world’s most powerful—and expensive—commercially produced launch vehicles. The launch was initially scheduled for Thursday afternoon but was scrubbed a few minutes before takeoff.

The mission represents ULA’s 160th overall and the 45th and final flight for the Delta family of rockets as the manufacturer transitions to its Vulcan Centaur. Vulcan made its maiden voyage in January, carrying a Peregrine lunar lander for commercial customer Astrobotic.

“The Delta legacy will live on through Vulcan,” said Gary Wentz, vice president of government and commercial programs for ULA. “We also take this moment to celebrate the thousands of men and women who made the Delta program such a success over the decades. We carry their lessons and wisdom with us into the future.”

ULA is a joint venture between Lockheed Martin and Boeing. It produces the Delta and Atlas families of rockets, primarily for U.S. government use. Delta IV Heavy is the third-highest capacity launch vehicle in operation, behind NASA’s Space Launch System (SLS) and SpaceX’s Falcon Heavy.

The Mission

Friday’s mission, NROL-70, is on behalf of the U.S. National Reconnaissance Office (NRO), which develops and operates spy satellites to collect intelligence and support disaster relief and humanitarian efforts. NROL-70 is ULA’s 35th mission for the NRO and 99th for U.S. national security.

The mission’s payload is classified. But it is possibly intended to give the U.S. more eyes and ears in the stars, which could be used to listen into communications or radio transmissions, for example. Delta IV Heavy is the only rocket in the world that meets all of the requirements to perform the mission, according to ULA.

“The NROL-70 mission will strengthen the NRO’s ability to provide a wide range of timely intelligence information to national decision makers, warfighters, and intelligence analysts to protect the nation’s vital interests and support humanitarian efforts worldwide,” ULA said on its website.

The 235-foot-tall spacecraft will lift off from Space Launch Complex-37 at Cape Canaveral as early as 1:37 p.m. EDT Friday. On ascent, the rocket looks as if it is catching fire, but this is by design, as hydrogen gas used to cool it down before takeoff ignites and burns off. The process is mitigated by a staggered engine ignition, which reduces the amount of hydrogen burned.

First stage separation is expected to occur about five minutes into the mission, followed by the ignition of the main engine and jettisoning of the payload fairing. The spacecraft’s route and final destination are classified.

The Machine

Over six decades, Delta rockets have launched 388 times. About two-thirds of those launched from Cape Canaveral Space Force Station in Florida, the base for Friday’s mission. Delta IV rockets have successfully launched 44 times, carrying payloads on behalf of the NRO, NASA, Air Force, and Space Force.

Delta IV comes in three configurations: Medium+, with either two or four solid rocket motors, and Heavy. Each vehicle consists of a common booster core, upper stage, and payload fairing.

Delta IV Heavy features three common booster core tanks, which power a RS-68A engine system built by Aerojet Rocketdyne. RS-68A is the largest hydrogen-burning engine in existence, according to ULA. The engines burn cryogenic liquid hydrogen and liquid oxygen, each delivering about 700,000 pounds of thrust at sea level.

Atop the booster is a Delta Cryogenic Second Stage (DCSS), or upper stage, which is also fueled by cryogenic liquid hydrogen and liquid oxygen. It is powered by a single RL10C-2-1 engine, also produced by Aerojet Rocketdyne, that produces nearly 25,000 pounds of thrust. The DCSS avionics system provides guidance and flight control for the booster.

Encapsulating the spacecraft is a payload fairing: a three-piece shell designed to shield cargo from the launch and ascent. The payload fairing can be installed off pad, improving safety and minimizing the use of launch facilities.

The History

Incredibly, the Delta family of systems has been in use since 1960. Initiated by NASA in the late 1950s, the program is derived from the Thor intermediate-range ballistic missile, which was later modified into a space launch vehicle.

The inaugural Delta launch in 1960 was unsuccessful. But it paved the way for Delta rockets to launch the world’s first Telstar and Intelsat communications satellites, birthing the phrase, “Live, via satellite!” The launch vehicles also carried NASA’s Pioneer and Explorer scientific spacecraft and delivered the first weather observatory, the Tiros and Geostationary Operational Environmental Satellites (GOES), to space, revolutionizing weather forecasting.

Over the years, ULA updated Delta rockets to make them larger, more advanced, and more durable. The company installed larger first stage tanks, strap-on solid rocket boosters, and advanced electronics and guidance systems, increased the rocket’s propellant capacity, upgraded the main engine, and developed upper stage and satellite payload systems.

The earliest Delta models stood about 90 feet tall, with a mass of 112,000 pounds. Today, Delta IV Heavy towers 235 feet high and weighs 1.6 million pounds at launch. Liftoff thrust, meanwhile, has skyrocketed from 150,000 pounds in 1960 to 2.1 million pounds.

Later Delta models would help usher in the GPS era by sending constellations of navigation satellites into orbit. Delta II launched four dozen satellites over two decades, and Delta IV launched seven.

Delta II—which made its final flight in 2018—completed eight NASA missions to Mars, including the delivery of the Spirit and Opportunity rovers, over the course of 155 flights. It also flew missions to Mercury and visited asteroids, moons, and comets within the solar system.

Delta II has launched probes that “touched the sun,” uncovered exoplanets deep in the Milky Way, and scanned large swaths of the universe using infrared vision. In 2014, it launched the first orbital test flight of NASA’s Orion capsule, which will ferry astronauts around the moon and back during the Artemis II mission in 2025.

By 2002, Boeing had developed Delta IV for the Space Force’s Evolved Expendable Launch Vehicle (EELV) program. That year, the rocket made its debut flight carrying a Eutelsat 33B, its only commercial payload to date. It delivered its first Air Force payload the following year. In 2007, ULA launched the first operational Delta IV Heavy, sending a Space Force Defense Support Program (DSP) satellite into orbit.

The Legacy

Fifteen flights later, Delta IV Heavy is set to become the final Delta rocket to be retired. In addition, ULA has 17 remaining launches for Atlas V, the country’s longest-serving active rocket. Atlas V is cheaper to launch than its counterpart, but it uses Russian-made rather than American-made engines.

Once Delta IV and Atlas V are off the manifest, ULA will transition all launches to Vulcan, which is less expensive than both predecessors. Like previous ULA launch systems, Vulcan is expendable. It was designed primarily for the National Security Space Launch program, as well as for commercial launches such as January’s mission. Customers include Amazon’s Project Kuiper, which placed an order for 38 launches.

ULA will need to compete with the likes of SpaceX, which in 2023 launched more satellites than any other company. SpaceX in 2010 debuted its reusable Falcon 9 launch vehicle, which undercut Delta IV’s price tag. Delta IV, Falcon 9, and SpaceX’s Falcon Heavy, introduced in 2018, are all under contract with the Pentagon to launch expensive military satellites in the coming years.

In addition, SpaceX has an agreement with the Space Force to take over the vacant Space Launch Complex 6 at Vandenberg Space Force Base in California, which hosted Delta IV launches until 2022. The company may further look to acquire room at Space Launch Complex-37 at Cape Canaveral, where ULA will launch Friday barring any hiccups.

Like this story? We think you’ll also like the Future of FLYING newsletter sent every Thursday afternoon. Sign up now.

The post ULA Prepares for Delta IV Heavy’s Final Mission appeared first on FLYING Magazine.

]]>
U.S. Space Force Preps Upcoming Rocket Launch https://www.flyingmag.com/u-s-space-force-preps-upcoming-rocket-launch/ Fri, 10 Jun 2022 20:30:59 +0000 https://www.flyingmag.com/?p=143260 The post U.S. Space Force Preps Upcoming Rocket Launch appeared first on FLYING Magazine.

]]>
U.S. Space Force’s (USSF) Space System Command (SSC) will soon launch two payloads into geosynchronous orbit via a United Launch Alliance (ULA) Atlas V 541 rocket for a mission it says will demonstrate the performance of an infrared sensor, conduct a variety of experiments, and validate the ability to host multiple missions on one structure.

The launch is set to take place June 29 from Cape Canaveral Space Force Station, Florida.

The mission, dubbed USSF-12, consists of  SSC’s Geosynchronous Earth Orbit (GEO) Wide Field of View (WFOV) Testbed and the Space Test Program’s (STP) USSF-12 Ring “rideshare spacecraft” that has a ring-based structure capable of accommodating multiple auxiliary payloads.

Rendering of the WFOV GEO [Courtesy: USSF Space Systems Command]

“Our GEO WFOV Testbed can simultaneously perform strategic missions, such as missile warning and battlespace awareness, as well as tactical missions directly supporting the warfighter, by continuously monitoring up to one-third of the Earth’s surface with just a single sensor,” Col. Heather Bogstie, senior materiel leader for Resilient Missile Warning, Tracking, and Defense in SSC’s Acquisition Delta, said in a statement. 

The WFOV testbed, which includes an advanced missile warning system, had been originally scheduled to launch in the spring, C4ISRNET reported.

The testbed is the mission’s primary payload and is an Overhead Persistent Infrared (OPIR) program demonstration in geosynchronous orbit aimed at proving the effectiveness of space sensing technology in addressing emerging threats from nearpeer adversaries, SSC said.

“This testbed is a critical technology component of the Missile Warning, Tracking, and Defense (MW/MT/MD) architecture in which SSC is partnering with the Space Development Agency (SDA) and the Missile Defense Agency (MDA) to rapidly deliver an integrated system of satellites,” it added.

The mission is expected to include a six-hour ascent before the launch of the WFOV and STP satellites about 22,000 miles above the equator, ULA said. The Atlas V rocket will stand about 196 feet tall and have a liftoff mass of about 1.18 million pounds, it said.

Buildup of the rocket was completed June 6 in preparation for the launch, ULA said. Testing of the rocket systems, and arrival of the encapsulated payload for integration atop the rocket is expected to be completed by mid-June.

The post U.S. Space Force Preps Upcoming Rocket Launch appeared first on FLYING Magazine.

]]>